scispace - formally typeset
Open AccessJournal ArticleDOI

A Combination of Relative-Numerical Dating Methods Indicates Two High Alpine Rock Glacier Activity Phases After the Glacier Advance of the Younger Dryas

Reads0
Chats0
TLDR
In this paper, Schmidt-hammer and weathering rind measurements were used to date rock glaciers in the Albula area of the eastern Swiss Alps, and the results showed that the number of active and relict glaciers increased with increasing surface ages.
Abstract
To exploit the potential of rock glaciers as indicators of past climate condition it is first necessary to date them. The combined application of both relative and absolute dating techniques is a promising approach. In this study, we present Schmidt-hammer rebound value measurements and weathering rind thicknesses on four active and one relict rock glacier in the Albula area of the eastern Swiss Alps. Associated landforms such as the moraines in front of rock glaciers and glacially polished bedrock also were used to set up the temporal framework. This was done using soil chemical analyses, radiocarbon dating of the stable fraction of soil organic matter and surface exposure dating of boulders. Schmidt-hammer and weathering rind measurements showed, in most cases, well-pronounced trends with increasing surface ages. These values are in line with measurements from other nearby rock glaciers with comparable lithologies. Use of this information together with the numeric ages makes it possible to derive two main activity phases: one started soon after the ice retreat following the Younger Dryas, the main activity occurred most likely in the early Holocene and lasted approximately until the Holocene climate optimum. The second activity phase continues today and had an unclear start between 10 to 6 cal ky BP.

read more

Content maybe subject to copyright    Report

ZurichOpenRepositoryand
Archive
UniversityofZurich
UniversityLibrary
Strickhofstrasse39
CH-8057Zurich
www.zora.uzh.ch
Year:2011
Acombinationofrelative-numericaldatingmethodsindicatestwohigh
AlpinerockglacieractivityphasesaftertheglacieradvanceoftheYounger
Dryas
Böhlert,R;Compeer,M;Egli,M;Brandova,D;Maisch,M;Kubik,PW;Haeberli,W
Abstract:To exploitthe potentialof rockglaciers as indicatorsof pastclimate conditionit isrst
necessarytodatethem.Thecombinedapplicationofbothrelativeandabsolutedatingtechniquesis
apromising approach.Inthis study, wepresentSchmidt-hammerrebound valuemeasurementsand
weatheringrindthicknessesonfouractiveandonerelictrockglacierintheAlbulaareaoftheeastern
SwissAlps.Associatedlandformssuchasthemorainesinfrontofrockglaciersandglaciallypolished
bedrockalsowereusedtosetupthetemporalframework.Thiswasdoneusingsoilchemicalanalyses,
radiocarbondatingofthestablefractionofsoilorganicmatterandsurfaceexposuredatingofboulders.
Schmidt-hammerandweatheringrindmeasurementsshowed,inmostcases,well-pronouncedtrendswith
increasingsurfaceages.Thesevaluesareinlinewithmeasurementsfromothernearbyrockglacierswith
comparablelithologies.Useofthisinformationtogetherwiththenumericagesmakesitpossibletoderive
twomainactivityphases: onestartedsoonaftertheiceretreatfollowingtheYoungerDryas,themain
activityoccurredmostlikelyintheearlyHoloceneandlastedapproximatelyuntiltheHoloceneclimate
optimum.Thesecondactivityphasecontinuestodayandhadanunclearstartbetween10to6calky
BP.
DOI:https://doi.org/10.2174/1874923201104010115
PostedattheZurichOpenRepositoryandArchive,UniversityofZurich
ZORAURL:https://doi.org/10.5167/uzh-42941
JournalArticle
Originallypublishedat:
Böhlert,R; Compeer,M; Egli, M; Brandova,D; Maisch,M; Kubik, P W; Haeberli,W (2011).A
combinationofrelative-numericaldatingmethodsindicatestwohighAlpinerockglacieractivityphases
aftertheglacieradvanceoftheYoungerDryas.OpenGeographyJournal,(4):115-130.
DOI:https://doi.org/10.2174/1874923201104010115

The Open Geography Journal, 2010, 3, 281-296 281!
!
1874-9232/10 2010 Bentham Open
Open Access
A Combination of Relative-Numerical Dating Methods Indicates Two High
Alpine Rock Glacier Activity Phases After the Glacier Advance of the
Younger Dryas
"#$%&!'(&$)*+
,
-!./0&#)$!123%))*
,
-!.#*456!78$/
9-,
-!:#83#*!'*#;<2=>
,
-!.#?!.#/60&
,
-!!
@)+)*!AB!C5D/4
E
-!A/$F*/)<!G#)D)*$/
,
!
1
Department of Geography, University of Zurich, CH-8057 Zurich, Switzerland
2
Institute of Ion Beam Physics, ETH-Hönggerberg, CH-8093 Zurich, Switzerland
Abstract: H2!)?%$2/+!+&)!%2+);+/#$!2F!*204!8$#0/)*6!#6!/;</0#+2*6!2F!%#6+!0$/3#+)!02;</+/2;!/+!/6!F/*6+!;)0)66#*I!+2!<#+)!+&)3B!
H&)! 023D/;)<! #%%$/0#+/2;! 2F! D2+&! *)$#+/=)! #;<! #D62$5+)! <#+/;8! +)0&;/J5)6! /6! #! %*23/6/;8! #%%*2#0&B! K;! +&/6! 6+5<I-! L)!
%*)6);+!M0&3/<+N&#33)*!*)D25;<!=#$5)!3)#65*)3);+6!#;<!L)#+&)*/;8!*/;<!+&/04;)66)6!2;!F25*!#0+/=)!#;<!2;)!*)$/0+!*204!
8$#0/)*!/;!+&)!O$D5$#!#*)#!2F!+&)!)#6+)*;!ML/66!O$%6B!O6620/#+)<!$#;<F2*36!650&!#6!+&)!32*#/;)6!/;!F*2;+!2F!*204!8$#0/)*6!
#;<! 8$#0/#$$I! %2$/6&)<! D)<*204! #$62! L)*)! 56)<! +2! 6)+! 5%! +&)! +)3%2*#$! F*#3)L2*4B! H&/6! L#6! <2;)! 56/;8! 62/$! 0&)3/0#$!
#;#$I6)6-! *#</20#*D2;! <#+/;8! 2F! +&)! 6+#D$)! F*#0+/2;! 2F! 62/$! 2*8#;/0! 3#++)*! #;<! 65*F#0)! )?%265*)! <#+/;8! 2F! D25$<)*6B!
M0&3/<+N&#33)*! #;<! L)#+&)*/;8! */;<! 3)#65*)3);+6! 6&2L)<-! /;! 326+! 0#6)6-! L)$$N%*2;25;0)<! +*);<6! L/+&! /;0*)#6/;8!
65*F#0)! #8)6B!H&)6)! =#$5)6! #*)! /;! $/;)! L/+&! 3)#65*)3);+6! F*23! 2+&)*! ;)#*DI! *204! 8$#0/)*6! L/+&! 023%#*#D$)!$/+&2$28/)6B!
P6)!2F!+&/6! /;F2*3#+/2;!+28)+&)*!L/+&!+&)!;53)*/0!#8)6!3#4)6!/+!%266/D$)!+2!<)*/=)!+L2!3#/;!#0+/=/+I!%&#6)6Q!2;)!6+#*+)<!
622;!#F+)*! +&)!/0)! *)+*)#+!F2$$2L/;8!+&)!R25;8)*!:*I#6-!+&)!3#/;!#0+/=/+I!2005**)<!326+! $/4)$I!/;!+&)!)#*$I!G2$20);)! #;<!
$#6+)<!#%%*2?/3#+)$I!5;+/$!+&)!G2$20);)!0$/3#+)!2%+/353B!H&)!6)02;<!#0+/=/+I!%&#6)!02;+/;5)6!+2<#I!#;<!&#<!#;!5;0$)#*!
6+#*+!D)+L));!,S!+2!T!0#$!4I!'@B!
Keywords: "204!8$#0/)*6-!*)$#+/=)!#;<!;53)*/0#$!<#+/;8!+)0&;/J5)6-!62/$6-!32*#/;)6B!
INTRODUCTION
!"204!8$#0/)*6!#6!</6+/;0+!+2;85)N6&#%)<!$#;<F2*36!#*)!
%)*);;/#$$I! F*2U);! #;<! /0)N*/0&! <)D*/6! 2;! ;2;N8$#0/)*/6)<!
325;+#/;! 6$2%)6! 0*))%6! 6+)#</$I! 5;<)*! +&)! /;F$5);0)! 2F!
8*#=/+I! V,WB! O0+/=)! *204! 8$#0/)*6! X/B)B-! +&)I! 02;+#/;! /0)! #;<!
<)F2*3Y!#*)!65%%26)<!+2!&#=)!F2*3)<!#;<!)=2$=)<!<5*/;8!+&)!
G2$20);)! #;<! 0#;! D)! 6));! #6! +*#;6%2*+! 6I6+)36B! H&)I! 3#I!
D)#*! $2;8N+)*3! %#$#)20$/3#+/0! /;F2*3#+/2;!VEWB! ")$/0+!F2*36!
2;! $2L)*! #$+/+5<)6! &#=)! $26+! +&)/*! /0)! 02;+);+! #;<! <2! ;2+!
0*))%! #;I32*)B! O6! +&)I! /;/+/#$$I! 356+! &#=)! F2*3)<! 5;<)*!
%)*3#F*26+! 02;</+/2;6! #6! L)$$-! +&)I! &#=)! #! 02;6/<)*#D$)!
%2+);+/#$! F2*! 02;6+*#/;/;8! F2*3)*! 0$/3#+/0! 02;</+/2;6! VZWB!
H&56-! <#+/;8! 2F! 650&! $#;<F2*36! /6! *)$)=#;+! F2*! #;I! 4/;<! 2F!
%#$)20$/3#+/0!*)02;6+*50+/2;6!#;<!/;+)*%*)+#+/2;B!
!A/+&!+/3)-!+&)!65*F#0)!2F!*204!8$#0/)*6!/6!/;0*)#6/;8$I!
65D[)0+! +2! L)#+&)*/;8! %*20)66)6B! P65#$$I-! +&)! 2$<)*! +&)!
65*F#0)!2F!*204!<)D*/6!+&)!32*)!%*2;25;0)<!/6!+&)!/3%*/;+!2F!
L)#+&)*/;8B! ")$#+/=)! #;<! ;53)*/0! #8)! <#+/;8! DI! 3)#65*/;8!
+&)! L)#+&)*/;8! */;<! +&/04;)66! 2*! +&)! M0&3/<+N&#33)*!
*)D25;<!=#$5)!L#6!6500)66F5$$I!%)*F2*3)<!2;!32*#/;)6!#;<!
*204!8$#0/)*6!<)=)$2%)<!2;!6#;<6+2;)6!/;!\)L!])#$#;<!V^N_W-!
D#6#$+/0!#;<!#;<)6/+/0! D25$<)*6! /;!\2*+&!O3)*/0#!#;<!`#%#;!!
Va-! ,SW! #;<! 2;! 8*#;/+)6! #;<! 8;)/66! /;! +&)! O$%6! VE-! ,,WB!
A)#+&)*/;8! */;<6! &#=)! #$62! #! 0)*+#/;! %2+);+/#$! F2*! ;53)*/0!
<#+/;8!56/;8!/62+2%)6!V,EWB!
!
!
9O<<*)66! 02**)6%2;<);0)! +2! +&/6! #5+&2*! #+! +&)! :)%#*+3);+! 2F! b)28*#%&I-!
P;/=)*6/+I!2F!]5*/0&-!1GN_Scd!]5*/0&-!ML/+U)*$#;<e!H)$Q!f^,!XSY^^!TZc!c,!
,^gE,e!h#?Q!f^,!XSY^^!TZc!T_!^,e!7N3#/$Q!3#*456B)8$/i8)2B5U&B0&!
!:5*/;8!+&)!%#6+!<)0#<)6-!6)=)*#$!6+5</)6!&#=)!D));!
0#**/)<! 25+! +2! <)+)*3/;)! +&)! #8)! 2F! *204! 8$#0/)*6! /;! +&)!
75*2%)#;! O$%6! V,ZN,cWB! CjjD! et alB! V,TW! 56)<!
%&2+28*#33)+*/0! 3)+&2<6! +2!2D+#/;!F$2L!+*#[)0+2*/)6!#;<!+2!
)6+/3#+)! #8)6! 2F! *2048$#0/)*! 65*F#0)6B! G#)D)*$/! et alB! V,dW!
%*2%26)<! #! 35$+/%$)! #%%*2#0&! 56/;8! *)$#+/=)! #;<! ;53)*/0#$!
<#+/;8! +2! 2D+#/;! 32*)! 02;0$56/=)! /;F2*3#+/2;! 2;! *204N
8$#0/)*6!<I;#3/06B!O!k0*266N0&)04l!2F!+&)6)!3)+&2<6!#$$2L6!
#;! )?+);<)<! /;+)*%*)+#+/2;! #;<! *)0/%*20#$! 02;+*2$! 2F! +&)!
*)65$+6B!M50&!#;!#%%*2#0&!&#6!5;+/$!;2L!*#*)$I!D));!<2;)!F2*!
O$%/;)!8)232*%&/0!F)#+5*)6B!H&)!602%)!2F!+&)!%*)6);+!%#%)*!
/6-! +&)*)F2*)-! +2! +)6+! #;<! #%%$I! 6)=)*#$! <#+/;8! +)0&;/J5)6! F2*!
#66)66/;8!+&)!#8)!#;<!#0+/=/+I!%&#6)6!2F!6)=)*#$!*204!8$#0/)*6!
/;!#!&/8&!O$%/;)!*)8/2;!2F!+&)!ML/66!O$%6B!
STUDY AREA
!H&)!6+5<I!#*)#!/6!$20#+)<!/;!+&)!)#6+)*;!ML/66!O$%6!Xh/8B!
1YB! H&)! #*)#! 2F! +&)! O$D5$#! %#66! /6! 0&#*#0+)*/6)<! DI! 3#;I!
8$#0/#$! #;<!8)232*%&/0! F)#+5*)6!650&! #6! 32*#/;)6-!%2$/6&)<!
D)<*204!L/+&!*20&)6!325+2;;m)6-!60*))!6$2%)6-!*204!8$#0/)*6-!
+*#0)6!2F!8$#0/#$!)*26/2;!X650&!#6!8*22=)6-!6+*/#+/2;6-!)+0BY!#;<!
%$504/;8!%*20)66)6B!H)0+2;/0#$$I-!+&)!*)8/2;!625+&)*;!2F! +&)!
O$D5$#! %#66! /6! 6/+5#+)<! L/+&/;! +&)! 7**N')*;/;#! ;#%! +&#+!
D)$2;86! +2! +&)! $2L)*! O56+*2#$%/;)B! H&)! 8*));/6&! kO$D5$#!
b*#;/+)l!/6!+&)!<23/;#;+!*204!+I%)!V,_NESWB!H&)!#<[#0);+!#*)#!
+2! +&)! ;2*+&! 2F! +&)! O$D5$#! %#66! D)$2;86! +2! +&)! 7$#! ;#%-!
023%26)<! 3#/;$I! 2F! 6)</3);+#*I! *204! +I%)6! #;<! <);2+)6! #!
6&#*%! 02;+*#6+! +2! +&)! 7**N');/;#! ;#%B! H&)! 3)#;! #;;5#$!
%*)0/%/+#+/2;!/6!*#+&)*!$2L!L/+&!#*25;<!aSS!33!/;!+&)!$2L)*!
%#*+6!;)#*! @*)<#! #;<!5%! +2!,,SS! 33!+2L#*<6!+&)! 325;+#/;!

282 The Open Geography Journal, 2010, Volume 3 Böhlert et al.
!"#$%&' ()*+,' -.%' !%/01&2!3/2%#' 45&2' 675/"57' 859":3:'
;468<' "/%' &3!=5/%' $%0:%2!>' ?5&%#' 01' $75/"57@$%070$"/57'
:5AA"1$' &.0B&' 2.52' 2.%' 5!%5' B5&' &"2352%#' 1%5!' 2.%'
CD1$5#"1%E'"/%'#0:%'/37:"152"1$'"1'2.%'FAA%!'D1$5#"1%'())G'
)H+,' -!":7"1%' 51#' 02.%!' %!0&"0157' =%523!%&' "1#"/52%' 2.52'
#3!"1$'468'2.%'I7?375'A5&&'=0!:%#'5'2!51&=73%1/%'B"2.'"/%'
=70B"1$'=!0:'2.%'D1$5#"1%'"120'2.%'J."1%'!"K%!'&>&2%:'()L+,'
-.%' 452%$75/"57' =002A!"12' ;:0!5"1%' &%M3%1/%<' 10!2.' 20' 2.%'
!"#$%'N"O'#5'75&'P75"&'Q'R!5&25'80!5';S"$,'1<'B5&'=0!:%#'5&'5'
!%&372' 0=' 5' &70A%@$75/"52"01' ()T+U' 017>' 52' 2.%' B%&2%!1'
?031#5!>' 0=' 2.%' =0!:%!' $75/"%!' #"#' 5' #"&2"1/2' "/%@201$3%'
#%K%70AG'5&'"1#"/52%#'?>' :0!5"1%&,'-."&'=0!:%!'201$3%'5!%5'
"&' 20#5>' 0//3A"%#' ?>' 2.%' !%752"K%7>' 701$' !0/V' $75/"%!' I7K!5'
;!0/V' $75/"%!' DG' S"$,' 1<,' D9/%A2' =0!' 2.%' 2B0' /"!M3%&' 20' 2.%'
WX' 51#' WD' 0=' R!5&25' 80!5G' 2.%!%' 5!%' 10' &"$1&' =0!' 2.%'
%9"&2%1/%' 0=' $75/"%!' "/%' #3!"1$' 2.%' 4"227%' Y/%' I$%' ()TG' )Z+,'
S"$,' ;2<' $"K%&' 51' 0K%!K"%B' 0=' 2.%' /57/3752%#' :0#%!1'
A%!:5=!0&2' #"&2!"?32"01' ()[+,' -.%' A0&"2"01' 0=' 2.%' !0/V'
$75/"%!&'I'Q'\'"1'2.%'10!2.'%9A0&%#'&70A%&';&%%'57&0'S"$,'3<'"&'
/7%5!7>' "#%12"="5?7%' B"2."1' 2.%' /012"1303&' A%!:5=!0&2,' Y1' 2.%'
5!%5'0='2.%'!0/V'$75/"%!'D'017>'&0:%'&A0!5#"/'A%!:5=!0&2'/51'
?%'%9A%/2%#,'
'S"K%'!0/V'$75/"%!&'1%5!'2.%'I7?375'A5&&'B%!%'"1K%&2"$52%#'
;=0!'#%25"7&G'&%%'S"$&,'3-5<,'S03!'5!%'&2"77'5/2"K%G'5&'"1#"/52%#'
?>' 2.%' 75/V' 0=' K%$%252"01G' ;I' Q' \]' S"$&,' 3G' 4<' B.%!%5&' 2.%'
!0/V'$75/"%!'I7K!5';D<'"&'!%7"/2,'-.%'!0/V'$75/"%!'I7K!5'7"%&'52'
5' 70B%!' 572"23#%' 2.51' 2.%' 02.%!&' ;S"$,' 5<' 51#' 7"%&' ?%2B%%1'
)^L^'51#')H)^':'5&7'B"2.'5'B%&2'0!"%1252"01,'I77'02.%!'!0/V'
$75/"%!&'5!%'52'51'572"23#%'0='5?032')L^^'3A'20')[^^':'5&7'51#'
.5K%'10!2.@=5/"1$' %9A0&3!%&,' X."7%' 2.%' 5/2"K%'!0/V'$75/"%!&'
&.0B' 5' &":A7%' &2!3/23!%' B"2.' 5' /7%5!7>' "#%12"="5?7%' !002"1$'
O01%' 51#' 5' /0:A5/2' &2%%A' 201$3%G' 2.%' /01#"2"01&' "1' /5&%' 0='
2.%' !0/V' $75/"%!' I7K!5' 5!%' :0!%' /0:A7%9,' 6%0:%2!>' ;701$'
&.5A%<' 51#' 5' !52.%!' =752' &70A%' "1' 2.%' :"##7%' 51#' 3AA%!' A5!2'
;S"$,' 5<' &3$$%&2' 5' #%?!"&' &3AA7>' =!0:' &%K%!57' &2%%A' #%?!"&'
&03!/%&'B"2."1'2.%'&70A%&'2.52'5!%'31"="%#'"1'2.%'!0/V'$75/"%!'
I7K!5' ;"1#"/52%#' ?>' 5!!0B&' "1' S"$,' 5<,' R01&%M3%127>G' 5701$'
2.%' =70B' 7"1%' 0=' 2.%' !0/V' $75/"%!' I7K!5G' &%K%!57' &:577' !0/V'
$75/"%!&' 5!%' /!0&&%#' 51#' .%1/%' 5' B%77@#%K%70A%#' 5$%' 2!%1#'
/51102'?%'%9A%/2%#,'Y1'5##"2"01'20'2.%'"1K%&2"$52"01&'01'!0/V'
$75/"%!&G'2B0'&0"7'A!0="7%&'B%!%'&23#"%#';S"$,'6<,'_1%'0='2.%:'
"&'01'5':0!5"1%'5&&"$1%#'20'2.%'D$%&%1'$75/"57'&252%'()T+'51#'
/70&%' 20' 2.%' !%7"/2' !0/V' $75/"%!' ;&"2%U' `Y$7&' N751&a<' 51#' 2.%'
02.%!'01%'#"!%/27>'?%70B'51'5/2"K%'!0/V'$75/"%!';&"2%U'`N%"#!5'
80!5a<,'Y1'5##"2"01G'2B0'&5:A7%&'=0!'&3!=5/%'%9A0&3!%'#52"1$'
=!0:'5'!0/.%':032011b%';&"2%'`R!5A'I7Ka<'B%!%'5157>&%#'20'
#%!"K%' 5' :59":3:' 5$%' =0!' #%$75/"52"01' ;B."/.' :3&2' .5K%'
A!%/%#%#' !0/V' $75/"%!' =0!:52"01<' /70&%' 20' 2.%' !0/V' $75/"%!'
201$3%'51#'/01&%M3%127>'=0!'2.%'&25!2'0='!0/V'$75/"%!'5/2"K"2>,'
Y1'/70&%'K"/"1"2>G'A!%K"03&7>@!%A0!2%#'#525'0='5'A%52'?0$'B5&'
5K5"75?7%'()T+,'
'
'
'
Fig. (1).'40/52"01'0='2.%'"1K%&2"$52"01'&"2%,'

Rock Glacier Activity in a High Alpine Region The Open Geography Journal, 2010, Volume 3 283
MATERIALS AND METHODS
Schmidt-Hammer Rebound Values
The Schmidt-hammer is a portable instrument originally
developed to test concrete quality in a non-destructive way
[28]. A spring-loaded bolt impacting a surface yields a
rebound- or R-value, which is proportional to the hardness
(compressive strength) of a rock surface. Applied in
geomorphology, old rock surfaces exposed to weathering
processes for a long time provide low R-values and vice
versa. Since the 1980s the method has also been successfully
used for relative age dating of gemorphologic features such
as moraines [14, 29, 30], rock glaciers ([2, 31] or rockfall
deposits [32]. Recent publications increasingly discuss the
possibilities and limitations to calibrate R-values, for
instance with results from
10
Be and
14
C-analyses [33, 34] or
optically stimulated luminescence and photogrammetrical
measurements [2, 17].
In this study the N-type Schmidt-Hammer (Proceq,
Switzerland) was used. On each mapped unit (e.g. moraine,
rock glacier lobe) 50 randomly selected boulders/sites were
measured, avoiding edges of boulders [35], spots that
Fig. (2). Spatial distribution of local (sporadic) and continuous permafrost in the investigation area (data source: [27]).
Fig. (3). Aerial photo (with a view in southern direction) of the investigated rock glaciers A-D.

284 The Open Geography Journal, 2010, Volume 3 Böhlert et al.
showed lichen growth as well as visual fissures or cracks.
Only flat parts under dry conditions were considered. The
hardness of an analysed form is represented by the arithmetic
mean of the individual records. Following the suggestions by
[30], we used a standard error based on the standard
deviation in a 95% confidence interval to get statistically
significant hardness variations and by extensions age
differences:
x ± 1.96
/ n
()
(1)
where
x
is the arithmetic mean,
the standard deviation
and
n
corresponds to the number of measurements.
Fig. (4). Detailed view of the investigated rock glaciers A-D. The uppermost part of the relict rock is shown in E1 and the middle and lower
part in E2.

Citations
More filters
Journal ArticleDOI

Exploring the potential of luminescence methods for dating Alpine rock glaciers

TL;DR: In this article, a case study assessing the potential of luminescence techniques (OSL, IRSL) to date the inner sand-rich layer of active rock glaciers is presented, focusing on the signal properties and the resetting of the signal prior to deposition by investigating single grains.
Journal ArticleDOI

Glacier extent and climate in the Maritime Alps during the Younger Dryas

TL;DR: In this article, the authors discuss the use of glacier reconstruction and ELA GIS tools and extraction of climatic variables at a glacier ELA, and discuss the climate of the Younger Dryas across the Alps.
Journal ArticleDOI

Deciphering the evolution of the Bleis Marscha rock glacier (Val d'Err, eastern Switzerland) with cosmogenic nuclide exposure dating, aerial image correlation, and finite element modeling

TL;DR: In this article, the authors constrain the Holocene development of the active BleisMarscha rock glacier (Err-Julier area, eastern Swiss Alps) by correlating two orthophotos from 2003 and 2012, and finite element modeling.
Journal ArticleDOI

Schmidt-hammer exposure-age dating (SHD) of sorted stripes on Juvflye, Jotunheimen (central South Norway): Morphodynamic and palaeoclimatic implications

TL;DR: In this article, Schmidt-hammer exposure-age dating (SHD) was performed on 23 sorted stripes (periglacial patterned ground) on Juvflye, Jotunheimen (central South Norway). All were located above the current lower limit of alpine permafrost.
Journal ArticleDOI

Early Holocene rock glacier stabilisation at col du Lautaret (French Alps): Palaeoclimatic implications

TL;DR: In this paper, the authors performed cosmic ray exposure (CRE) dating through beryllium-10 (10Be) on 10 granitic rock samples collected from two relict rock glaciers, hereafter referred as RG1 and RG2, located at col du Lautaret in the French Alps.
References
More filters
Journal ArticleDOI

Air pressure and cosmogenic isotope production

TL;DR: In this article, it was shown that the cosmic ray flux increases at higher altitude as air pressure and the shielding effect of the atmosphere decrease, and that altitude-dependent scaling factors are required to compensate for this effect in calculating cosmic ray exposure ages.
Journal ArticleDOI

Development of the radiocarbon calibration program

TL;DR: This paper highlights some of the main developments to the radiocarbon calibration program, OxCal, including changes to the sampling algorithms used which improve the convergence of the Bayesian analysis.
Journal ArticleDOI

Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides

TL;DR: An isolation method relying totally on chemical steps was developed to separate large quantities (10-200 g) of clean mono-minerallic quartz samples from a variety of terrestrial rocks and soils for the purpose of measuring Be-10 (t 1/2 = 1.5 Myr) and Al-26 (t1 2 = 0.705 Myr) produced by cosmic rays in situ in the quartz phase.
Related Papers (5)
Frequently Asked Questions (1)
Q1. What have the authors contributed in "A combination of relative-numerical dating methods indicates two high alpine rock glacier activity phases after the glacier advance of the younger dryas" ?

In this study, the authors present Schmidt-hammer rebound value measurements and weathering rind thicknesses on four active and one relict rock glacier in the Albula area of the eastern Swiss Alps. Use of this information together with the numeric ages makes it possible to derive two main activity phases: one started soon after the ice retreat following the Younger Dryas, the main activity occurred most likely in the early Holocene and lasted approximately until the Holocene climate optimum.