scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A community-driven global reconstruction of human metabolism

01 May 2013-Nature Biotechnology (Nature Publishing Group)-Vol. 31, Iss: 5, pp 419-425
TL;DR: Recon 2, a community-driven, consensus 'metabolic reconstruction', is described, which is the most comprehensive representation of human metabolism that is applicable to computational modeling and has improved topological and functional features.
Abstract: Multiple models of human metabolism have been reconstructed, but each represents only a subset of our knowledge. Here we describe Recon 2, a community-driven, consensus 'metabolic reconstruction', which is the most comprehensive representation of human metabolism that is applicable to computational modeling. Compared with its predecessors, the reconstruction has improved topological and functional features, including ~2× more reactions and ~1.7× more unique metabolites. Using Recon 2 we predicted changes in metabolite biomarkers for 49 inborn errors of metabolism with 77% accuracy when compared to experimental data. Mapping metabolomic data and drug information onto Recon 2 demonstrates its potential for integrating and analyzing diverse data types. Using protein expression data, we automatically generated a compendium of 65 cell type–specific models, providing a basis for manual curation or investigation of cell-specific metabolic properties. Recon 2 will facilitate many future biomedical studies and is freely available at http://humanmetabolism.org/.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Because of the inherent sensitivity of metabolomics, subtle alterations in biological pathways can be detected to provide insight into the mechanisms that underlie various physiological conditions and aberrant processes, including diseases.
Abstract: Metabolomics, which is the profiling of metabolites in biofluids, cells and tissues, is routinely applied as a tool for biomarker discovery. Owing to innovative developments in informatics and analytical technologies, and the integration of orthogonal biological approaches, it is now possible to expand metabolomic analyses to understand the systems-level effects of metabolites. Moreover, because of the inherent sensitivity of metabolomics, subtle alterations in biological pathways can be detected to provide insight into the mechanisms that underlie various physiological conditions and aberrant processes, including diseases.

1,440 citations

Journal ArticleDOI
TL;DR: This work states that an increasing number of studies have recently combined models with high-throughput data sets for prospective experimentation, leading to validation of increasingly important and relevant biological predictions.
Abstract: The prediction of cellular function from a genotype is a fundamental goal in biology. For metabolism, constraint-based modelling methods systematize biochemical, genetic and genomic knowledge into a mathematical framework that enables a mechanistic description of metabolic physiology. The use of constraint-based approaches has evolved over ~30 years, and an increasing number of studies have recently combined models with high-throughput data sets for prospective experimentation. These studies have led to validation of increasingly important and relevant biological predictions. As reviewed here, these recent successes have tangible implications in the fields of microbial evolution, interaction networks, genetic engineering and drug discovery.

734 citations

Journal ArticleDOI
TL;DR: This protocol provides an overview of all new features of the COBRA Toolbox and can be adapted to generate and analyze constraint-based models in a wide variety of scenarios.
Abstract: Constraint-based reconstruction and analysis (COBRA) provides a molecular mechanistic framework for integrative analysis of experimental molecular systems biology data and quantitative prediction of physicochemically and biochemically feasible phenotypic states. The COBRA Toolbox is a comprehensive desktop software suite of interoperable COBRA methods. It has found widespread application in biology, biomedicine, and biotechnology because its functions can be flexibly combined to implement tailored COBRA protocols for any biochemical network. This protocol is an update to the COBRA Toolbox v.1.0 and v.2.0. Version 3.0 includes new methods for quality-controlled reconstruction, modeling, topological analysis, strain and experimental design, and network visualization, as well as network integration of chemoinformatic, metabolomic, transcriptomic, proteomic, and thermochemical data. New multi-lingual code integration also enables an expansion in COBRA application scope via high-precision, high-performance, and nonlinear numerical optimization solvers for multi-scale, multi-cellular, and reaction kinetic modeling, respectively. This protocol provides an overview of all these new features and can be adapted to generate and analyze constraint-based models in a wide variety of scenarios. The COBRA Toolbox v.3.0 provides an unparalleled depth of COBRA methods.

719 citations

Journal ArticleDOI
Paul A. Northcott1, Paul A. Northcott2, Ivo Buchhalter1, Ivo Buchhalter3, A. Sorana Morrissy, Volker Hovestadt1, Joachim Weischenfeldt4, Tobias Ehrenberger5, Susanne Gröbner1, Maia Segura-Wang6, Thomas Zichner6, Vasilisa A. Rudneva, Hans-Jörg Warnatz7, Nikos Sidiropoulos4, Aaron H. Phillips2, Steven E. Schumacher8, Kortine Kleinheinz1, Sebastian M. Waszak6, Serap Erkek6, Serap Erkek1, David T.W. Jones1, Barbara C. Worst1, Marcel Kool1, Marc Zapatka1, Natalie Jäger1, Lukas Chavez1, Barbara Hutter1, Matthias Bieg1, Nagarajan Paramasivam3, Nagarajan Paramasivam1, Michael Heinold3, Michael Heinold1, Zuguang Gu1, Naveed Ishaque1, Christina Jäger-Schmidt1, Charles D. Imbusch1, Alke Jugold1, Daniel Hübschmann1, Daniel Hübschmann3, Daniel Hübschmann9, Thomas Risch7, Vyacheslav Amstislavskiy7, Francisco German Rodriguez Gonzalez4, Ursula D. Weber1, Stephan Wolf1, Giles W. Robinson2, Xin Zhou2, Gang Wu2, David Finkelstein2, Yanling Liu2, Florence M.G. Cavalli, Betty Luu, Vijay Ramaswamy, Xiaochong Wu, Jan Koster, Marina Ryzhova, Yoon Jae Cho10, Scott L. Pomeroy11, Christel Herold-Mende3, Martin U. Schuhmann12, Martin Ebinger, Linda M. Liau13, Jaume Mora14, Roger E. McLendon15, Nada Jabado16, Toshihiro Kumabe17, Eric Chuah18, Yussanne Ma18, Richard A. Moore18, Andrew J. Mungall18, Karen Mungall18, Nina Thiessen18, Kane Tse18, Tina Wong18, Steven J.M. Jones18, Olaf Witt9, Till Milde9, Andreas von Deimling9, David Capper9, Andrey Korshunov9, Marie-Laure Yaspo7, Richard W. Kriwacki2, Amar Gajjar2, Jinghui Zhang2, Rameen Beroukhim8, Ernest Fraenkel5, Jan O. Korbel6, Benedikt Brors1, Matthias Schlesner1, Roland Eils3, Roland Eils1, Marco A. Marra18, Stefan M. Pfister9, Stefan M. Pfister1, Michael D. Taylor19, Peter Lichter1 
19 Jul 2017-Nature
TL;DR: The application of integrative genomics to an extensive cohort of clinical samples derived from a single childhood cancer entity revealed a series of cancer genes and biologically relevant subtype diversity that represent attractive therapeutic targets for the treatment of patients with medulloblastoma.
Abstract: Current therapies for medulloblastoma, a highly malignant childhood brain tumour, impose debilitating effects on the developing child, and highlight the need for molecularly targeted treatments with reduced toxicity. Previous studies have been unable to identify the full spectrum of driver genes and molecular processes that operate in medulloblastoma subgroups. Here we analyse the somatic landscape across 491 sequenced medulloblastoma samples and the molecular heterogeneity among 1,256 epigenetically analysed cases, and identify subgroup-specific driver alterations that include previously undiscovered actionable targets. Driver mutations were confidently assigned to most patients belonging to Group 3 and Group 4 medulloblastoma subgroups, greatly enhancing previous knowledge. New molecular subtypes were differentially enriched for specific driver events, including hotspot in-frame insertions that target KBTBD4 and 'enhancer hijacking' events that activate PRDM6. Thus, the application of integrative genomics to an extensive cohort of clinical samples derived from a single childhood cancer entity revealed a series of cancer genes and biologically relevant subtype diversity that represent attractive therapeutic targets for the treatment of patients with medulloblastoma.

706 citations

Journal ArticleDOI
TL;DR: This update paper has substantially extended the collection of endogenous metabolites for several organisms including human, mouse, Escherichia coli and yeast and added two new tools, namely an analysis tool, BiNChE, and a query tool for the ontology, OntoQuery.
Abstract: ChEBI is a database and ontology containing information about chemical entities of biological interest. It currently includes over 46,000 entries, each of which is classified within the ontology and assigned multiple annotations including (where relevant) a chemical structure, database cross-references, synonyms and literature citations. All content is freely available and can be accessed online at http://www.ebi.ac.uk/chebi. In this update paper, we describe recent improvements and additions to the ChEBI offering. We have substantially extended our collection of endogenous metabolites for several organisms including human, mouse, Escherichia coli and yeast. Our front-end has also been reworked and updated, improving the user experience, removing our dependency on Java applets in favour of embedded JavaScript components and moving from a monthly release update to a 'live' website. Programmatic access has been improved by the introduction of a library, libChEBI, in Java, Python and Matlab. Furthermore, we have added two new tools, namely an analysis tool, BiNChE, and a query tool for the ontology, OntoQuery.

676 citations


Cites background from "A community-driven global reconstru..."

  • ...ChEBI is widely used for many different purposes including as a source of stable unique identifiers for chemicals in annotations in a wide range of bioinformatics databases, including as of recently UniProt for references to chemicals as cofactors, (4) and systems biology models (5,6)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: This primer covers the theoretical basis of the approach, several practical examples and a software toolbox for performing the calculations.
Abstract: Flux balance analysis is a mathematical approach for analyzing the flow of metabolites through a metabolic network. This primer covers the theoretical basis of the approach, several practical examples and a software toolbox for performing the calculations.

3,229 citations

Journal ArticleDOI
TL;DR: This work summarizes the Systems Biology Markup Language (SBML) Level 1, a free, open, XML-based format for representing biochemical reaction networks, a software-independent language for describing models common to research in many areas of computational biology.
Abstract: Motivation: Molecular biotechnology now makes it possible to build elaborate systems models, but the systems biology community needs information standards if models are to be shared, evaluated and developed cooperatively. Results: We summarize the Systems Biology Markup Language (SBML) Level 1, a free, open, XML-based format for representing biochemical reaction networks. SBML is a software-independent language for describing models common to research in many areas of computational biology, including cell signaling pathways, metabolic pathways, gene regulation, and others. ∗ To whom correspondence should be addressed. Availability: The specification of SBML Level 1 is freely available from http://www.sbml.org/.

3,205 citations

Journal ArticleDOI
TL;DR: The latest version of DrugBank (release 2.0) has been expanded significantly over the previous release and contains 60% more FDA-approved small molecule and biotech drugs including 10% more ‘experimental’ drugs.
Abstract: DrugBank is a richly annotated resource that combines detailed drug data with comprehensive drug target and drug action information. Since its first release in 2006, DrugBank has been widely used to facilitate in silico drug target discovery, drug design, drug docking or screening, drug metabolism prediction, drug interaction prediction and general pharmaceutical education. The latest version of DrugBank (release 2.0) has been expanded significantly over the previous release. With approximately 4900 drug entries, it now contains 60% more FDA-approved small molecule and biotech drugs including 10% more 'experimental' drugs. Significantly, more protein target data has also been added to the database, with the latest version of DrugBank containing three times as many non-redundant protein or drug target sequences as before (1565 versus 524). Each DrugCard entry now contains more than 100 data fields with half of the information being devoted to drug/chemical data and the other half devoted to pharmacological, pharmacogenomic and molecular biological data. A number of new data fields, including food-drug interactions, drug-drug interactions and experimental ADME data have been added in response to numerous user requests. DrugBank has also significantly improved the power and simplicity of its structure query and text query searches. DrugBank is available at http://www.drugbank.ca.

2,380 citations

Journal ArticleDOI
TL;DR: A broad, drug-like phase II metabolic response of the host to metabolites generated by the microbiome was observed, suggesting that the gut microflora has a direct impact on the drug metabolism capacity of theHost.
Abstract: Although it has long been recognized that the enteric community of bacteria that inhabit the human distal intestinal track broadly impacts human health, the biochemical details that underlie these effects remain largely undefined. Here, we report a broad MS-based metabolomics study that demonstrates a surprisingly large effect of the gut “microbiome” on mammalian blood metabolites. Plasma extracts from germ-free mice were compared with samples from conventional (conv) animals by using various MS-based methods. Hundreds of features were detected in only 1 sample set, with the majority of these being unique to the conv animals, whereas ≈10% of all features observed in both sample sets showed significant changes in their relative signal intensity. Amino acid metabolites were particularly affected. For example, the bacterial-mediated production of bioactive indole-containing metabolites derived from tryptophan such as indoxyl sulfate and the antioxidant indole-3-propionic acid (IPA) was impacted. Production of IPA was shown to be completely dependent on the presence of gut microflora and could be established by colonization with the bacterium Clostridium sporogenes. Multiple organic acids containing phenyl groups were also greatly increased in the presence of gut microbes. A broad, drug-like phase II metabolic response of the host to metabolites generated by the microbiome was observed, suggesting that the gut microflora has a direct impact on the drug metabolism capacity of the host. Together, these results suggest a significant interplay between bacterial and mammalian metabolism.

2,140 citations

Journal ArticleDOI
TL;DR: The analysis here suggests that state stem cell funding programs are sufficiently large and established that simply ending the programs, at least in the absence of substantial investment in the field by other funding sources, could have deleterious effects.
Abstract: 1. Anonymous. Nat. Biotechnol. 28, 987 (2010). 2. Plosila, W.H. Econ. Dev. Q. 18, 113–126 (2004). 3. Stayn, S. BNA Med. Law Pol. Rep. 5, 718–725 (2006). 4. Lomax, G. & Stayn, S. BNA Med. Law Pol. Rep. 7, 695–698 (2008). 5. Levine, A.D. Public Adm. Rev. 68, 681–694 (2008). 6. Levine, A.D. Nat. Biotechnol. 24, 865–866 (2006). 7. McCormick, J.B., Owen-Smith, J. & Scott, C.T. Cell Stem Cell 4, 107–110 (2009). 8. Fossett, J.W., Ouellette, A.R., Philpott, S., Magnus, D. & Mcgee, G. Hastings Cent. Rep. 37, 24–35 (2007). 9. Mintrom, M. Publius 39, 606–631 (2009). 10. Scott, C.T., McCormick, J.B. & Owen-Smith, J. Nat. Biotechnol. 27, 696–697 (2009). 11. Takahashi, K. & Yamanaka, S. Cell 126, 663–676 (2006). Foundation and the Georgia Research Alliance, and Georgia Tech. They thank J. Walsh at Georgia Tech for helpful comments on an earlier version of this manuscript. They also appreciate the assistance they received with data collection from officials in various state stem cell agencies. A.D.L. would also like to thank A. Jakimo, whose comment at a meeting of the Interstate Alliance on Stem Cell Research inspired collection of these data. stem cell programs, as well as similar state programs supporting other areas of science, is uncertain. The analysis here suggests that state stem cell funding programs are sufficiently large and established that simply ending the programs, at least in the absence of substantial investment in the field by other funding sources, could have deleterious effects. Such action would fail to capitalize on the initial efforts of scientists who have been drawn to the field of stem cell research by state programs and leave many stem cell scientists suddenly searching for funding to continue their research. Large-scale state funding for basic research is a relatively new phenomenon, and many questions remain about the impact of these programs on the development of scientific fields and the careers of scientists. The influence of state funding programs on the distribution of research publications, the acquisition of future external funding, the creation of new companies and the translation of basic research into medical practice, for instance, are important unanswered questions. Similarly, comparing state funding programs with federal funding programs as well as foundations could offer new insight into the relative priorities of different funding bodies and the extent to which their funding portfolios overlap or are distinct. We hope the analysis presented here and the public release of the underlying database will inspire additional analysis of state science funding programs generally and state-funded stem cell science in particular.

2,131 citations