scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

A compact and high-speed plasmonic slot waveguide coupled with photonic waveguide based 2x2 electro-optic switch

01 Mar 2016-Proceedings of SPIE (SPIE)-Vol. 9750, pp 308-317
TL;DR: In this paper, an electro-optic switch at 1.55 μm wavelength based on Mach-Zehnder Interferometer (MZI) in which, the MZI arms and the input-output 3-dB couplers are designed using plasmonic and photonic waveguides re- spectively.
Abstract: We report an electro-optic switch at 1.55 μm wavelength based on Mach-Zehnder Interferometer (MZI) in which, the MZI arms and the input-output 3-dB couplers are designed using plasmonic and photonic waveguides re- spectively. More than 90% photons are successfully converted into surface plasmons through tapering the both photonic as well as plasmonic waveguide. The plasmonic and photonic mode profiles, interaction between plas- monic and RF fields, confinement of plasmonic field in plasmonic waveguide, and trade-off between loss and confinement are thoroughly examined before the combined optical and electrical simulation of the switch. The switching voltage is less than 6 Volts, the MZI arm length is only 15 μm, the crosstalk is less than -35 dB, and the maximum switching speed is 11.55 ps. The footprint of the switch is only 290x50 μm2.
References
More filters
Journal ArticleDOI
TL;DR: In this paper, the optical constants for the noble metals (copper, silver, and gold) from reflection and transmission measurements on vacuum-evaporated thin films at room temperature, in the spectral range 0.5-6.5 eV.
Abstract: The optical constants $n$ and $k$ were obtained for the noble metals (copper, silver, and gold) from reflection and transmission measurements on vacuum-evaporated thin films at room temperature, in the spectral range 0.5-6.5 eV. The film-thickness range was 185-500 \AA{}. Three optical measurements were inverted to obtain the film thickness $d$ as well as $n$ and $k$. The estimated error in $d$ was \ifmmode\pm\else\textpm\fi{} 2 \AA{}, and that in $n$, $k$ was less than 0.02 over most of the spectral range. The results in the film-thickness range 250-500 \AA{} were independent of thickness, and were unchanged after vacuum annealing or aging in air. The free-electron optical effective masses and relaxation times derived from the results in the near infrared agree satisfactorily with previous values. The interband contribution to the imaginary part of the dielectric constant was obtained by subtracting the free-electron contribution. Some recent theoretical calculations are compared with the results for copper and gold. In addition, some other recent experiments are critically compared with our results.

17,509 citations

Journal ArticleDOI
14 Aug 2003-Nature
TL;DR: By altering the structure of a metal's surface, the properties of surface plasmons—in particular their interaction with light—can be tailored, which could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved.
Abstract: Surface plasmons are waves that propagate along the surface of a conductor. By altering the structure of a metal's surface, the properties of surface plasmons--in particular their interaction with light--can be tailored, which offers the potential for developing new types of photonic device. This could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved. Surface plasmons are being explored for their potential in subwavelength optics, data storage, light generation, microscopy and bio-photonics.

10,689 citations

Book
15 May 2007
TL;DR: In this paper, the authors discuss the role of surface plasmon polaritons at metal/insulator interfaces and their application in the propagation of surfaceplasmon waveguides.
Abstract: Fundamentals of Plasmonics.- Electromagnetics of Metals.- Surface Plasmon Polaritons at Metal / Insulator Interfaces.- Excitation of Surface Plasmon Polaritons at Planar Interfaces.- Imaging Surface Plasmon Polariton Propagation.- Localized Surface Plasmons.- Electromagnetic Surface Modes at Low Frequencies.- Applications.- Plasmon Waveguides.- Transmission of Radiation Through Apertures and Films.- Enhancement of Emissive Processes and Nonlinearities.- Spectroscopy and Sensing.- Metamaterials and Imaging with Surface Plasmon Polaritons.- Concluding Remarks.

7,238 citations


"A compact and high-speed plasmonic ..." refers background in this paper

  • ...SPP is a coupled electromagnetic surface wave, propagating at metal-insulator interface and confined by evanescent waves at that interface.(4,5) In a latest study on nano-photonic architectures, it is argued that, only those sections of device on which the energy efficiency and speed depend, should be made of the plasmonic waveguides, whereas rest of the device should be made of the photonic waveguides....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors summarized the basic principles and major achievements of plasmon guiding, and details the current state-of-the-art in subwavelength PLASmonic waveguides, passive and active nanoplasmonic components for the generation, manipulation and detection of radiation, and configurations for the nanofocusing of light.
Abstract: Recent years have seen a rapid expansion of research into nanophotonics based on surface plasmon–polaritons. These electromagnetic waves propagate along metal–dielectric interfaces and can be guided by metallic nanostructures beyond the diffraction limit. This remarkable capability has unique prospects for the design of highly integrated photonic signal-processing systems, nanoresolution optical imaging techniques and sensors. This Review summarizes the basic principles and major achievements of plasmon guiding, and details the current state-of-the-art in subwavelength plasmonic waveguides, passive and active nanoplasmonic components for the generation, manipulation and detection of radiation, and configurations for the nanofocusing of light. Potential future developments and applications of nanophotonic devices and circuits are also discussed, such as in optical signals processing, nanoscale optical devices and near-field microscopy with nanoscale resolution.

3,481 citations

Journal ArticleDOI
TL;DR: In this article, a numerical analysis of surface plasmon waveguides exhibiting both long-range propagation and spatial confinement of light with lateral dimensions of less than 10% of the free-space wavelength is presented.
Abstract: We present a numerical analysis of surface plasmon waveguides exhibiting both long-range propagation and spatial confinement of light with lateral dimensions of less than 10% of the free-space wavelength. Attention is given to characterizing the dispersion relations, wavelength-dependent propagation, and energy density decay in two-dimensional Ag/SiO2/Ag structures with waveguide thicknesses ranging from 12 nm to 250 nm. As in conventional planar insulator-metal-insulator (IMI) surface plasmon waveguides, analytic dispersion results indicate a splitting of plasmon modes—corresponding to symmetric and antisymmetric electric field distributions—as SiO2 core thickness is decreased below 100 nm. However, unlike IMI structures, surface plasmon momentum of the symmetric mode does not always exceed photon momentum, with thicker films (d~50 nm) achieving effective indices as low as n=0.15. In addition, antisymmetric mode dispersion exhibits a cutoff for films thinner than d=20 nm, terminating at least 0.25 eV below resonance. From visible to near infrared wavelengths, plasmon propagation exceeds tens of microns with fields confined to within 20 nm of the structure. As the SiO2 core thickness is increased, propagation distances also increase with localization remaining constant. Conventional waveguiding modes of the structure are not observed until the core thickness approaches 100 nm. At such thicknesses, both transverse magnetic and transverse electric modes can be observed. Interestingly, for nonpropagating modes (i.e., modes where propagation does not exceed the micron scale), considerable field enhancement in the waveguide core is observed, rivaling the intensities reported in resonantly excited metallic nanoparticle waveguides.

1,107 citations