scispace - formally typeset
Search or ask a question
Book ChapterDOI

A Comparative Analysis of Local Pattern Descriptors for Face Recognition

01 Jan 2018-pp 129-154
TL;DR: This chapter describes the various local pattern descriptors for face recognition and shows the effectiveness of the descriptor.
Abstract: Face recognition has lot of challenges in biometrics. The challenges are addressed effectively by local pattern descriptors. The idea of local descriptors is to determine the feature vector and then compute the difference between test images with training images by using similarity measure. Based on the observation, local approaches attained better performance rate than other approaches in face recognition. Due to that, researchers made a significant attention on local descriptors for face recognition. For nonlinear subspace, the local descriptors will achieve better result than holistic approach. Local pattern descriptor follows simple procedure to extract the facial features. The steps are face alignment, face representation, and matching. Face alignment is the first step of local descriptor, which is used to divide the image into several blocks. Face representation is used to extract the meaningful information from each region. This local feature extraction method carries discriminant information of the region; it will improve the classification rate and matching rate. Local descriptors extract the discriminant information from the neighbors by setting a threshold value as center pixel value, and it is not capable of extracting the detailed information from microstructure. Finally, matching by classification techniques or distance measure is used to identify or verify the person. The local pattern descriptors are more robust against pose, lighting, and scale variations. This chapter describes the various local pattern descriptors and shows the effectiveness of the descriptor. The results of local pattern descriptors are experimented on standard benchmark databases such as FERET, Extended Yale-B, ORL, CAS-PEAL, LFW, JAFFE, and Cohn–Kannade.
Citations
More filters
01 Jan 1990
TL;DR: An overview of the self-organizing map algorithm, on which the papers in this issue are based, is presented in this article, where the authors present an overview of their work.
Abstract: An overview of the self-organizing map algorithm, on which the papers in this issue are based, is presented in this article.

2,933 citations

Journal ArticleDOI
TL;DR: The two feature vectors obtained by these methods concatenated to form a hybrid descriptor outperforms the other descriptors in face analysis and is carried out on benchmark databases.
Abstract: Face analysis, which includes face recognition and facial expression recognition, has been attempted by many researchers and gave ideal solutions. The problem is still active and challenging due to an increase in the complexity of the problem viz. due to poor lighting, face occlusion, low-resolution images, etc. Local pattern descriptor methods introduced to overcome these critical issues and improve the recognition rate. These methods extract the discriminant information from the local features of the face image for recognition. In this paper, the local descriptor based two methods, namely row-based local directional pattern and correlation-based local directional pattern proposed by extending an existing descriptor -- local directional pattern (LDP). Further, the two feature vectors obtained by these methods concatenated to form a hybrid descriptor. Experimentation has carried out on benchmark databases and results infer that the proposed hybrid descriptor outperforms the other descriptors in face analysis.

1 citations

Book ChapterDOI
01 Jan 2022
TL;DR: In this paper , a Smart Attendance with Real Time Face Recognition (SARTFR) is proposed based on Viola Jones Algorithm and LBP methods for student detection and recognition for tracking student attendance.
Abstract: Face Recognition (FR) is a biometric technique that involves determining whether the image of a given person’s face matches any of the face images stored in a database. As a key attributes of biometric ratification, FR is widely utilized in different types of administration systems for video surveillance, computer human interface, indoor access systems, & network security. The proposed scheme is designed for student detection and recognition for tracking student attendance. As a result, Smart Attendance with Real Time Face Recognition (SARTFR) is a practical solution for day to day employee management activities. SARTFR is proposed based on Viola Jones Algorithm and LBP methods. SARTFR has got better results in terms of detection, recognition and tracking from the results.
References
More filters
Journal ArticleDOI
TL;DR: A near-real-time computer system that can locate and track a subject's head, and then recognize the person by comparing characteristics of the face to those of known individuals, and that is easy to implement using a neural network architecture.
Abstract: We have developed a near-real-time computer system that can locate and track a subject's head, and then recognize the person by comparing characteristics of the face to those of known individuals. The computational approach taken in this system is motivated by both physiology and information theory, as well as by the practical requirements of near-real-time performance and accuracy. Our approach treats the face recognition problem as an intrinsically two-dimensional (2-D) recognition problem rather than requiring recovery of three-dimensional geometry, taking advantage of the fact that faces are normally upright and thus may be described by a small set of 2-D characteristic views. The system functions by projecting face images onto a feature space that spans the significant variations among known face images. The significant features are known as "eigenfaces," because they are the eigenvectors (principal components) of the set of faces; they do not necessarily correspond to features such as eyes, ears, and noses. The projection operation characterizes an individual face by a weighted sum of the eigenface features, and so to recognize a particular face it is necessary only to compare these weights to those of known individuals. Some particular advantages of our approach are that it provides for the ability to learn and later recognize new faces in an unsupervised manner, and that it is easy to implement using a neural network architecture.

14,562 citations

Journal ArticleDOI
TL;DR: A generalized gray-scale and rotation invariant operator presentation that allows for detecting the "uniform" patterns for any quantization of the angular space and for any spatial resolution and presents a method for combining multiple operators for multiresolution analysis.
Abstract: Presents a theoretically very simple, yet efficient, multiresolution approach to gray-scale and rotation invariant texture classification based on local binary patterns and nonparametric discrimination of sample and prototype distributions. The method is based on recognizing that certain local binary patterns, termed "uniform," are fundamental properties of local image texture and their occurrence histogram is proven to be a very powerful texture feature. We derive a generalized gray-scale and rotation invariant operator presentation that allows for detecting the "uniform" patterns for any quantization of the angular space and for any spatial resolution and presents a method for combining multiple operators for multiresolution analysis. The proposed approach is very robust in terms of gray-scale variations since the operator is, by definition, invariant against any monotonic transformation of the gray scale. Another advantage is computational simplicity as the operator can be realized with a few operations in a small neighborhood and a lookup table. Experimental results demonstrate that good discrimination can be achieved with the occurrence statistics of simple rotation invariant local binary patterns.

14,245 citations

Journal ArticleDOI
TL;DR: This paper evaluates the performance both of some texture measures which have been successfully used in various applications and of some new promising approaches proposed recently.

6,650 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an up-to-date critical survey of still-and video-based face recognition research, and provide some insights into the studies of machine recognition of faces.
Abstract: As one of the most successful applications of image analysis and understanding, face recognition has recently received significant attention, especially during the past several years. At least two reasons account for this trend: the first is the wide range of commercial and law enforcement applications, and the second is the availability of feasible technologies after 30 years of research. Even though current machine recognition systems have reached a certain level of maturity, their success is limited by the conditions imposed by many real applications. For example, recognition of face images acquired in an outdoor environment with changes in illumination and/or pose remains a largely unsolved problem. In other words, current systems are still far away from the capability of the human perception system.This paper provides an up-to-date critical survey of still- and video-based face recognition research. There are two underlying motivations for us to write this survey paper: the first is to provide an up-to-date review of the existing literature, and the second is to offer some insights into the studies of machine recognition of faces. To provide a comprehensive survey, we not only categorize existing recognition techniques but also present detailed descriptions of representative methods within each category. In addition, relevant topics such as psychophysical studies, system evaluation, and issues of illumination and pose variation are covered.

6,384 citations

01 Oct 2008
TL;DR: The database contains labeled face photographs spanning the range of conditions typically encountered in everyday life, and exhibits “natural” variability in factors such as pose, lighting, race, accessories, occlusions, and background.
Abstract: Most face databases have been created under controlled conditions to facilitate the study of specific parameters on the face recognition problem. These parameters include such variables as position, pose, lighting, background, camera quality, and gender. While there are many applications for face recognition technology in which one can control the parameters of image acquisition, there are also many applications in which the practitioner has little or no control over such parameters. This database, Labeled Faces in the Wild, is provided as an aid in studying the latter, unconstrained, recognition problem. The database contains labeled face photographs spanning the range of conditions typically encountered in everyday life. The database exhibits “natural” variability in factors such as pose, lighting, race, accessories, occlusions, and background. In addition to describing the details of the database, we provide specific experimental paradigms for which the database is suitable. This is done in an effort to make research performed with the database as consistent and comparable as possible. We provide baseline results, including results of a state of the art face recognition system combined with a face alignment system. To facilitate experimentation on the database, we provide several parallel databases, including an aligned version.

5,742 citations