scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A comparative analysis reveals little evidence for niche conservatism in aquatic macrophytes among four areas on two continents

TL;DR: The results suggest that niche shifts, rather than different environmental conditions, were responsible for variable responses of aquatic macrophytes to local ecological variables, which highlights the need to study niche conservatism using local-scale data to better understand whether species' niches are conserved.
Abstract: One of the most intriguing questions in current ecology is the extent to which the ecological niches of species are conserved in space and time. Niche conservatism has mostly been studied using coarse-scale data of species' distributions, although it is at the local habitat scales where species' responses to ecological variables primarily take place. We investigated the extent to which niches of aquatic macrophytes are conserved among four study regions (i.e. Finland, Sweden and the US states of Minnesota and Wisconsin) on two continents (i.e. Europe and North America) using data for 11 species common to all the four study areas. We studied how ecological variables (i.e. local, climate and spatial variables) explain variation in the distributions of these common species in the four areas using species distribution modelling. In addition, we examined whether species' niche parameters vary among the study regions. Our results revealed large variation in both species' responses to the studied ecological variables and in species' niche parameters among the areas. We found little evidence for niche conservatism in aquatic macrophytes, though local environmental conditions among the studied areas were largely similar. This suggests that niche shifts, rather than different environmental conditions, were responsible for variable responses of aquatic macrophytes to local ecological variables. Local habitat niches of aquatic macrophytes are mainly driven by variations in local environmental conditions, whereas their climate niches are more or less conserved among regions. This highlights the need to study niche conservatism using local-scale data to better understand whether species' niches are conserved, because different niches (e.g. local versus climate) operating at various scales may show different degrees of conservatism. The extent to which species' niches are truly conserved has wide practical implications, including for instance, predicting changes in species' distributions in response to global change.

Summary (2 min read)

INTRODUCTION

  • Different niche concepts exist (e.g., Hutchinson 1957) , including fundamental, realised and existing fundamental niches (see review by Chase and Leibold 2003) .
  • Fine-grained data enables evaluating effects of the Eltonian noise hypothesis (Soberón and Nakamura 2009) .
  • The authors study examines whether or not niches of aquatic macrophytes are conserved between different geographical areas.

Study areas and macrophyte species

  • These four distinct study areas show a clear east-west orientation.
  • In addition to these major climatic differences, both Finland and Minnesota have harsher climate conditions than Sweden and Wisconsin.
  • In addition, many aquatic macrophytes are known to have efficient dispersal abilities, and often aggressively colonize new habitats (Santamaria 2002) .
  • Species' prevalence varied among the areas and was often similar between geographically neighbouring study areas (Table S2 ).

Explanatory variables

  • Explanatory data consisted of lake-specific local, climate and spatial variables (Table S1 ).
  • In Finland, water chemistry comprised of median values of 1-m surface water samples taken during the growing season (June-September) over the period 2000-2008.
  • Spatial variables originated from db-MEMs, were orthogonal (linearly independent) and were obtained from spectral decomposition of a truncated distance matrix of the spatial relationships among sampling locations.
  • The authors used geographic coordinates of lake centres to calculate Euclidean distances between lakes, and only positive eigenvectors were employed in additional analyses.
  • These spatial eigenvectors are specific for each study region, thus cannot be directly compared across the different regions.

Statistical analyses

  • The authors used two methods to test for differences in mean environmental conditions and heterogeneity of environmental conditions among the study areas.
  • These analyses were done separately for standardized values of "local", "climate" and "combined local-climate" variable groups.
  • Significance of among-study area differences was tested through permutation of least-squares residuals.
  • In the ordinal approach, the authors evaluated whether local and climate niches vary among the same 11 species across the study areas using Outlying Mean Index analysis (OMI, Dolédec et al. 2000) .

Response of macrophyte species to ecological variables in different study areas

  • Contrary to their expectations, the same macrophyte species responded differently to ecological variables in the four study areas (Table 1 ).
  • Only 3 (Ceratophyllum demersum, Phalaris arundinacea and Phragmites australis) of the 11 species studied were primarily affected by the same major ecological gradient over all the four study areas based on the variation partitioning procedure.
  • These results emphasise that local variables dominate over climate constraints in affecting the distributions of aquatic macrophyte species at regional extents.
  • The importance of local and climate variables on the studied species' distributions varied strongly across study areas.
  • Spatial variables with both large and small eigenvalues (SV1-SV20), indicating broad-and fine-scale variation in spatial structure, were the most influential for the studied species in Finland, Sweden and Minnesota.

Niche parameters: differences among species and among areas

  • Niche positions did not remain relatively similar in different study areas, and niche breaths were not especially wide for all species in all study areas (Table 3 ).
  • The niche positions were correlated among study areas, but correlations found for niche breadths among the study areas were low (Table 4 ).
  • In general, niche positions within each continent were positively correlated; however, correlations were negative between the continents.
  • For the niche breadths, species' values for Finland and Sweden were weakly positively correlated based on local, climate or combined localclimate conditions.
  • Other relationships varied incongruently among the study areas.

DISCUSSION

  • Species' niches and dispersal-related processes have recently been considered when studying niche conservatism in relation to their geographic distributions (Soberón 2007 , Godsoe 2010 , Peterson 2011) .
  • Only 3 of the 11 species studied were primarily affected by the same pure component across all the study areas based on the variation partitioning procedure.
  • The influence of alkalinity on macrophytes is related to the use of bicarbonate (HCO3 -) as a source of carbon for submerged species, directly influencing photosynthesis, growth and long-term survival (Rørslett 1991, Vestergaard and Sand-Jensen 2000) .
  • Previous niche conservatism studies have mostly examined shifts in climate niches (Hawkins et al. 2014 , Wasof et al. 2015) ; however, the authors found that climate variables contributed less than local variables to the distribution of aquatic macrophytes.
  • Spatial processes were, quite unexpectedly, also rather important for many macrophyte species.

Niche shifts or conservatism?

  • The authors found surprisingly little evidence for niche conservatism in the distributions of the 11 macrophyte species among the four study areas.
  • This finding suggests that the same species may have a wide niche breadth and/or non-marginal niche position in one area and a narrow niche breadth or marginal niche position in another area relative to the niches of the other species studied.
  • Thus, different responses of the same species to local environmental conditions may not be due to differences in environmental heterogeneity among the study areas, but rather, are more likely due to region-specific niche shifts in aquatic macrophytes in relation to local environmental conditions.
  • Alternatively, the environmental conditions across the study area are taken into account, and the environments available to the species are used differently between various regions.
  • More research is needed, however, to confirm assumptions because phenotypically plastic species traits causing incongruent results across their study areas can theoretically still be evolutionarily conserved.

Did you find this useful? Give us your feedback

Figures (5)

Content maybe subject to copyright    Report

1
A comparative analysis reveals little evidence for niche conservatism in aquatic
1
macrophytes among four areas on two continents
2
3
Janne Alahuhta
1, 2*
, Frauke Ecke
3
, Lucinda B. Johnson
4
, Laura Sass
5
and Jani Heino
6
4
5
1
University of Oulu, Department of Geography, FI-90014 University of Oulu, Finland,
6
2
Finnish Environment Institute, Freshwater Centre, FI-90014 Oulu, Finland
7
3
Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment,
8
SWE-75007 Uppsala, Sweden
9
4
University of Minnesota Duluth, Natural Resources Research Institute, 5013 Miller Trunk
10
Highway, Duluth, MN 55811, USA
11
5
Illinois Natural History Survey, Prairie Research Institute, University of Illinois, 1816 South Oak
12
Street, Champaign, IL 61820, USA
13
6
Finnish Environment Institute, Natural Environment Centre, Biodiversity, FI-90014 Oulu, Finland
14
15
*Correspondence: Janne Alahuhta, University of Oulu, Department of Geography, P.O. Box 3000,
16
FI-90014, University of Oulu, Finland.
17
E-mail: janne.alahuhta@oulu.fi
18
19
20
21
22
23

2
SUMMARY
24
One of the most intriguing questions in current ecology is the extent to which the ecological niches
25
of species are conserved in space and time. Niche conservatism has mostly been studied using
26
coarse-scale data of species distributions, although it is at the local habitat scales where species
27
responses to ecological variables primarily take place. We investigated the extent to which niches of
28
aquatic macrophytes are conserved among four study regions (i.e., Finland, Sweden and the US
29
states of Minnesota and Wisconsin) on two continents (i.e., Europe and North America) using data
30
for 11 species common to all the four study areas. We studied how ecological variables (i.e., local,
31
climate and spatial variables) explain variation in the distributions of these common species in the
32
four areas using species distribution modelling. In addition, we examined whether species niche
33
parameters vary among the study regions. Our results revealed large variation in both species
34
responses to the studied ecological variables and in species’ niche parameters among the areas. We
35
found little evidence for niche conservatism in aquatic macrophytes, though local environmental
36
conditions among the studied areas were largely similar. This suggests that niche shifts, rather than
37
different environmental conditions, were responsible for variable responses of aquatic macrophytes
38
to local ecological variables. Local habitat niches of aquatic macrophytes are mainly driven by
39
variations in local environmental conditions, whereas their climate niches are more or less
40
conserved among regions. This highlights the need to study niche conservatism using local-scale
41
data to better understand whether species niches are conserved, because different niches (e.g., local
42
vs. climate) operating at various scales may show different degrees of conservatism. The extent to
43
which species niches are truly conserved has wide practical implications, including for instance,
44
predicting changes in species’ distributions in response to global change.
45
46
47

3
INTRODUCTION
48
49
The extent to which ecological niches of species are conserved in space and time has important
50
implications for a wide variety of biogeographical, ecological and evolutionary questions (Wiens
51
and Graham 2005, Pearman et al. 2008, Warren et al. 2008). These questions range from ecological
52
specialization to predicting changes in species distributions under global change (Wiens et al.
53
2010, Peterson 2011). For example, the reliability of predictions provided by species distribution
54
modelling is questionable if niche shifts have truly taken place in different areas (Bennett et al.
55
2010, Wiens et al. 2005, Wiens et al. 2010). The concept of niche conservatism assumes that a
56
niche of a species remains unchanged or changes only slowly over hundreds to millions of years
57
(Wiens and Graham 2005, Pearman et al. 2008). Furthermore, it assumes environmentally
58
unsuitable conditions can limit a species’ geographic range when niche conservatism prevails
59
(Wiens et al. 2010). Although this concept was coined relatively recently (Peterson et al. 1999), the
60
idea of ecological niche dates back to the early 20th century (Grinnell 1917, Elton 1927). Different
61
niche concepts exist (e.g., Hutchinson 1957), including fundamental, realised and existing
62
fundamental niches (see review by Chase and Leibold 2003). A fundamental niche describes the
63
environmental conditions and resources that a species is potentially able to use, whereas the realised
64
niche represents the part of the fundamental niche that the species actually occupies as a result of
65
biotic interactions (e.g., predation, competition and parasitism). The existing fundamental niche is
66
the portion of the fundamental niche that is represented across the area accessible to the species
67
(Peterson et al. 2011).
68
69
Niche conservatism, in relation to the geographical distributions of species, is typically studied
70
using coarse grid-based data of species ranges at broad spatial extents (Hawkins et al. 2014, Wasof
71

4
et al. 2015), while niche shifts in space and time are less frequently investigated using fine-grained
72
data (i.e., samples from local ecosystems) at broad spatial extents (but see Bennett et al. 2010,
73
Valdujo et al. 2013; Wasof et al. 2013). The ready availability of spatial data at medium to coarse
74
scales provides the opportunity to examine niche conservatism with respect to climatic variation
75
(Broennimann et al. 2007, Hawkins et al. 2014, Wasof et al. 2015); however, local habitat niche
76
studies require fine scale data not available across large regions. Fine-grained data enables
77
evaluating effects of the Eltonian noise hypothesis (Soberón and Nakamura 2009). This hypothesis
78
predicts that ecological interactions and species effects on resources define individual distributions
79
at fine spatial scales, whereas coarse-scaled abiotic factors structure distributions at broader scales.
80
81
Local-scale habitat variables can strongly affect species niche shifts even at broad spatial scales,
82
because it is the local habitat to which species respond in the first place (e.g. Wasof et al. 2013).
83
The phenomenon is exemplified by water acidity-related niches of freshwater diatoms which are
84
conserved across continents (Bennett et al. 2010). In many freshwater systems, local water
85
chemistry and habitat structure contribute equally or more strongly than climate to species
86
distributions and community structure at broad spatial extents (Sharma et al. 2011, Alahuhta 2015).
87
These local habitat variables are also essential in determining species niche parameters, because
88
ecological gradients across freshwater ecosystems are often strong. For example, wide variation in
89
influential chemical and physical characteristics typically exists within a small geographical area
90
(Elser et al. 2007), and species respond to these major environmental gradients (Bennett et al. 2010,
91
Sharma et al. 2011, Alahuhta and Heino 2013). Typically, researchers are interested in knowing
92
how species niche positions and niche breadths vary in relation to local habitat variables
93
(Boulangeat et al. 2012, Wasof et al. 2013, Heino and Grönroos 2014), and potential niche shifts
94
can be observed from differences in these habitat niche parameters for the same species across
95

5
different areas (Ackerly 2003). Species niches are probably conserved if the distribution-
96
environment relationships are relatively similar for the same species across different study areas.
97
98
Recently, dispersal has also been included in the set of important processes affecting the
99
relationship between realised niches and geographical distributions (Soberón 2007, Soberón and
100
Nakamura 2009, Godsoe 2010, Peterson 2011). Dispersal is incorporated in the concept of spatial
101
processes, which depending on their dispersal abilities and possible geographical barriers allows
102
species to track variation in suitable habitats (Heino and de Mendoza, 2016). Species disperse
103
among suitable habitats that are structured as a network of habitat patches, varying in area, degree
104
of isolation and quality, surrounded by unsuitable habitats in the landscape (Hanski 1998, Leibold et
105
al. 2004). Spatial processes can constrain species responses to environmental variability, thus
106
relating directly to niche conservatism (Wiens et al. 2010). Spatial processes are especially
107
important in lake systems, because adaptation to living in water leads to the formation of well-
108
delimited populations surrounded by an inhospitable terrestrial matrix (Dahlgren and Ehrlén 2005,
109
Hortal et al. 2014). Lake macrophytes are a particularly suitable organismal group for the study of
110
spatial variability because these plants cannot actively move and have strong spatial structure even
111
within lake habitats (Nilsson et al. 2010, Arthaud et al. 2013). To date, it has been assumed that the
112
ecological niches of aquatic macrophytes remain unchanged in space (Chambers et al. 2008),
113
although no actual study has investigated whether or not the niches of aquatic macrophytes are
114
conserved at broad spatial extents.
115
116
Our study examines whether or not niches of aquatic macrophytes are conserved between different
117
geographical areas. Our primary aim is to investigate how ecological variables (i.e., local, climate
118
and spatial) explain variation in the distributions of common aquatic macrophyte species in four
119

Citations
More filters
Journal ArticleDOI
TL;DR: Gecheva et al. as mentioned in this paper proposed a method to identify the root cause of gender discrimination in the media and found that women are more likely to be discriminated against than men.
Abstract: Additional co-authors: Gana Gecheva, Patrick Grillas, Jennifer Hauxwell, Seppo Hellsten, Jan Hjort, Mark V. Hoyer, Agnieszka Kolada, Minna Kuoppala, Torben Lauridsen, En‒Hua Li, Balazs A. Lukacs, Marit Mjelde, Alison Mikulyuk, Roger P. Mormul, Jun Nishihiro, Beat Oertli, Laila Rhazi, Mouhssine Rhazi, Laura Sass, Christine Schranz, Martin Sondergaard, Takashi Yamanouchi, Qing Yu, Haijun Wang, Xiao‒Ke Zhang, Jani Heino

114 citations


Cites background from "A comparative analysis reveals litt..."

  • ...…related to, for example, ecosystem functioning (Symstad et al., 2003) and resilience (Folke et al., 2004), biogeographical regionalization (Divisek et al., 2016), niche conservatism (Alahuhta et al., 2017), species conservation (Brooks et al., 2008) and ecosystem services (Naidoo et al., 2008)....

    [...]

  • ..., 2016), niche conservatism (Alahuhta et al., 2017), species conservation (Brooks et al....

    [...]

Journal ArticleDOI
TL;DR: In the era of the Anthropocene, environmental change is accelerating biodiversity loss across ecosystems on Earth, among which freshwaters are likely the most threatened as mentioned in this paper, and different biodiversity fac...
Abstract: In the era of the Anthropocene, environmental change is accelerating biodiversity loss across ecosystems on Earth, among which freshwaters are likely the most threatened. Different biodiversity fac...

54 citations

Journal ArticleDOI
TL;DR: In this article, the authors draw together available information from broad-scale research on aquatic macrophytes growing in lakes, ponds, wetlands, rivers and streams and summarize how different macroecological rules fit the patterns shown by freshwater plants at various spatial scales.

35 citations

Journal ArticleDOI
TL;DR: The results supported the notion that ecological niches evolved independently of phylogeny in macrophyte lineages worldwide and showed that large-scale processes along latitudinal and elevational gradients have left a strong footprint in the current diversity patterns and community-environment relationships in lake macrophytes.

34 citations

Journal ArticleDOI
TL;DR: Investigating the dispersal capacity of species, namely their LDD potential, may contribute to estimate the likelihood of species to keep pace with climate change.
Abstract: The persistence of species may depend upon their capacity to keep pace with climate change. However, dispersal has been ignored in the vast majority of studies that aimed at estimating and predicting range shifts as a response to climate change. Long distance dispersal (LDD) in particular might promote rapid range shifts and allow species to track suitable habitat. Many aquatic plant species are dispersed by birds and have the potential to be dispersed over hundreds of kilometers during the bird migration seasons. I argue that such dispersal potential might be critical to allow species to track climate change happening at unprecedented high rates. As a case study, I used dispersal data from three aquatic plant species dispersed by migratory birds to model range shifts in response to climate change projections. By comparing four dispersal scenarios - (1) no dispersal, (2) unlimited dispersal, (3) LDD < 100 km, and (4) LDD mediated by bird migratory movements -, it was shown that, for bird-mediated dispersal, the rate of colonization is sufficient to counterbalance the rate of habitat loss. The estimated rates of colonization (3.2-31.5 km⋅year-1) are higher than, for example, the rate of global warming (previously estimated at 0.42 km⋅year-1). Although further studies are needed, the results suggest that these aquatic plant species can adjust their ranges under a severe climate change scenario. Therefore, investigating the dispersal capacity of species, namely their LDD potential, may contribute to estimate the likelihood of species to keep pace with climate change.

22 citations


Cites background from "A comparative analysis reveals litt..."

  • ...Another line of evidence comes from a recent study showing that the niche of aquatic plants is not conserved among different regions (Alahuhta et al., 2017)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The results indicate that metapopulation processes affect the distribution of freshwater plants, but that their relative importance vary widely among species.
Abstract: We investigated the relative importance of metapopulation processes versus environmental conditions for the distribution of freshwater plants in 51 adjacent lakes in southern Sweden. Each lake was surveyed by snorkeling in a zigzag pattern over the littoral zone, and all aquatic vascular plants as well as water colour, Sphagnum-dominated shore, bottom substrate, littoral zone width and Secchi-depth were recorded. Data on lake area and altitude was taken from topographical maps. Multiple generalized linear regressions were used to test the significance of factors influencing species number and incidence of specific species in lakes. The best combination of predictor variables for species number was lake area (β=0.52), area of upstream lakes (β=0.23), and height above sea-level (β=-0.21) (whole model R 2 =0.52). The presence-absence patterns of most of the studied species were affected positively by connectivity, measured both as geographical proximity of the lakes and as connection to upstream lakes. The level of effect of connectivity on species incidence was also correlated with life history traits. The distributions of emergent species were less affected by connectivity than those of submerged and floating-leafed types, reflecting that emergent plants can occur in habitat patches surrounding the lakes. The results indicate that metapopulation processes affect the distribution of freshwater plants, but that their relative importance vary widely among species.

41 citations


"A comparative analysis reveals litt..." refers background or result in this paper

  • ...For example, the depth gradient determines the extent of the littoral zone and 388 strongly affects both submerged and emergent macrophytes, whereas lake area affects more 389 emergent macrophytes (Rørslett 1991, Toivonen and Huttunen 1995, Dahlgren and Ehrlén 2005)....

    [...]

  • ...Spatial processes are especially 107 important in lake systems, because adaptation to living in water leads to the formation of well-108 delimited populations surrounded by an inhospitable terrestrial matrix (Dahlgren and Ehrlén 2005, 109 Hortal et al. 2014)....

    [...]

  • ...However, compared to emergent plants, the distributions of submerged and free418 floating species were found to be more strongly influenced geographical connectivity of lakes 419 (Dahlgren and Ehrlén 2005)....

    [...]

  • ...These incongruent results may be related to different study 422 extents (a single river basin in Dahlgren and Ehrlén 2005 and multiple river basins in our study), 423 and potential dispersal limitation of these species among highly eutrophic lakes in Minnesota and 424 Wisconsin....

    [...]

  • ...However, compared to emergent plants, the distributions of submerged and free-418 floating species were found to be more strongly influenced geographical connectivity of lakes 419 (Dahlgren and Ehrlén 2005)....

    [...]

Journal ArticleDOI
TL;DR: The aim is to document the post‐glacial migration of the major aquatic macrophytes of North America.
Abstract: Aim To document the post-glacial migration of the major aquatic macrophytes of North America. Location North America north of Mexico. Methods Aquatic macrophyte pollen were extracted from the North American Pollen Database. The modern pollen distribution was mapped and related to the climate to document the geographical and climatic constraints on these taxa. The fossil pollen were mapped at 2-ka intervals for the past 21 ka. Results Numerous genera were present in ice-free Alaska during the Last Glacial Maximum, and south of the Laurentide Ice Sheet in the southeast. Those taxa with the widest modern climatic ranges migrated rapidly into ice-marginal areas, first in the west and then in the east of North America. Subsequent changes in the range and abundance were smaller. Main conclusions There were four migration routes of aquatic macrophytes during the late-glacial and post-glacial periods: a southward migration from Alaska between 14–13 and ka, a northern migration in the west at the same time into the ice-free Cordilleran region, and movements east and west of Appalachia as early as 19 ka for some taxa into the lower Mississippi and into the upper Mississippi and Great Lakes by 11 ka. As the Laurentide ice sheet wasted, aquatic taxa with the broadest contemporary temperature tolerances rapidly occupied ice-marginal environments.

41 citations

Journal ArticleDOI
TL;DR: It is concluded that lentic habitats can be particularly important for the development of the most functional aspects of macroecology, due to the relative ease of studying the different biotic and abiotic components of the system separately, compared to most terrestrial systems.
Abstract: Macroecology studies large-scale patterns aiming to identify the effects of general ecological processes. Although lakes (and ponds) are particularly suited for macroecological research due to their discrete nature and non geographically-structured variability, the development of this discipline in lentic habitats is comparatively much smaller than for terrestrial environments. This is despite the interest of limnologists for large-scale phenomena, which results in the high level of development of some disciplines such as predictive limnology. Here we discuss how current state-of-the-art in macroecology may benefit from research in lentic habitats at five topics. First, by including an island biogeography analytical framework to incorporate the effects of lake origin and history on lentic biodiversity. Second, by studying local and regional effects on the latitudinal gradients of species richness. Third, by considering lakes and ponds altogether for the study of beta diversity and metacommunity structure, which is already common ground in limnological research. Fourth, by relating species traits with ecosystem structure and functioning; here we consider in particular the potential effects of body size-determined dispersal and competitive exclusion processes on lake-wide trophic organization. And fifth, by incorporating current research in functional (i.e., trait) and phylogenetic diversity to the study of community structure. We finally conclude that lentic habitats can be particularly important for the development of the most functional aspects of macroecology, due to the relative ease of studying the different biotic and abiotic components of the system separately, compared to most terrestrial systems. This can allow teasing apart many of the confounding factors that are characteristic of macroecological research, thus helping the development of future theoretical syntheses.

41 citations

Journal ArticleDOI
TL;DR: This work assesses how climatic niches vary across species ranges by focusing on a limited number of species, mostly invasive, and has not, to date, been very conclusive about how these niches are affected by climate change.
Abstract: Aim Previous research on how climatic niches vary across species ranges has focused on a limited number of species, mostly invasive, and has not, to date, been very conclusive. Here we assess the d ...

39 citations


"A comparative analysis reveals litt..." refers background in this paper

  • ...449 Wasof et al. (2015) similarly discovered that climate niche parameters indicated niche conservatism 450 for terrestrial vascular plants between Fennoscandia and the Alps....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors analyzed aquatic plant species richness in relation to succession stage, measured as numbers of years since the last major disturbance that affected the ecosystems, and lake productivity measured as the chlorophyll a concentration, and connectivity to similar nearby ecosystems, a proxy for the potential input of diaspores.
Abstract: Questions The highest species richness is usually expected at an intermediate stage of development since the last major disturbance event, but some studies have shown that ecosystem productivity and dispersal may modify this pattern, suggesting the need for further studies on the effects of productivity and dispersal on the dynamics of species richness through succession. In this study, we analysed aquatic plant species richness in relation to (1) succession stage, measured as numbers of years since the last disturbance that affected the ecosystems; (2) lake productivity, measured as the chlorophyll a concentration; and (3) connectivity to similar nearby ecosystems, a proxy for the potential input of diaspores. Location Shallow lakes of the Dombes region, France. Methods Every 5–7 yr these shallow lakes are emptied and left to dry out for 1 yr. These drought disturbances lead to complete destruction of the submerged aquatic plant communities. Sixty lakes arranged along a gradient of productivity were selected. The probability of diaspore input was considered to increase from upstream to downstream, as lakes are organized in hydrologically connected networks via ditches, through which the downstream lakes receive water from the upstream lakes. For each lake, the aquatic plant species richness (from systematic summer vegetation sampling), time since the last disturbance (last summer drying), productivity (estimated as chlorophyll a concentration) and probability of diaspore input (assessed from position in the network) were recorded. Results The aquatic plant species richness decreased with the time since the last disturbance for all of the lakes, but there was a significant interaction with the chlorophyll a concentration and position of the lake in the network. At the lowest ecosystem productivities, the relationship between successional stage and species richness was hump-shaped, whereas the species richness decreased with increasing time since the last disturbance when productivity increased. The lake's position in the network did not influence species richness during the first 2 yr after disturbance, but from year 3 and thereafter, lakes connected to high numbers of upstream lakes consistently exhibited decreased richness, contradicting the expected trend of increasing species richness with increasing diaspore inputs. Conclusions This study indicates that both ecosystem productivity and connectivity strongly affected the relationship between aquatic plant species richness and succession, and that these factors should be taken into account in further developments of the intermediate disturbance hypothesis.

37 citations

Frequently Asked Questions (1)
Q1. What are the contributions in this paper?

Alahuhta et al. this paper, Frauke Ecke, Lucinda B. Johnson, Laura Sass and Jani Heino studied macrophytes among four areas on two continents.