scispace - formally typeset
Open accessJournal ArticleDOI: 10.1088/1757-899X/263/4/042097

A comparative study of deep learning models for medical image classification

01 Oct 2017-Vol. 263, Iss: 4, pp 042097
Abstract: Deep Learning(DL) techniques are conquering over the prevailing traditional approaches of neural network, when it comes to the huge amount of dataset, applications requiring complex functions demanding increase accuracy with lower time complexities. Neurosciences has already exploited DL techniques, thus portrayed itself as an inspirational source for researchers exploring the domain of Machine learning. DL enthusiasts cover the areas of vision, speech recognition, motion planning and NLP as well, moving back and forth among fields. This concerns with building models that can successfully solve variety of tasks requiring intelligence and distributed representation. The accessibility to faster CPUs, introduction of GPUs-performing complex vector and matrix computations, supported agile connectivity to network. Enhanced software infrastructures for distributed computing worked in strengthening the thought that made researchers suffice DL methodologies. The paper emphases on the following DL procedures to traditional approaches which are performed manually for classifying medical images. The medical images are used for the study Diabetic Retinopathy(DR) and computed tomography (CT) emphysema data. Both DR and CT data diagnosis is difficult task for normal image classification methods. The initial work was carried out with basic image processing along with K-means clustering for identification of image severity levels. After determining image severity levels ANN has been applied on the data to get the basic classification result, then it is compared with the result of DNNs (Deep Neural Networks), which performed efficiently because of its multiple hidden layer features basically which increases accuracy factors, but the problem of vanishing gradient in DNNs made to consider Convolution Neural Networks (CNNs) as well for better results. The CNNs are found to be providing better outcomes when compared to other learning models aimed at classification of images. CNNs are favoured as they provide better visual processing models successfully classifying the noisy data as well. The work centres on the detection on Diabetic Retinopathy-loss in vision and recognition of computed tomography (CT) emphysema data measuring the severity levels for both cases. The paper discovers how various Machine Learning algorithms can be implemented ensuing a supervised approach, so as to get accurate results with less complexity possible.

...read more

Topics: Deep learning (59%), Artificial neural network (56%), Contextual image classification (54%) ...read more
Citations
  More

Proceedings ArticleDOI: 10.1109/ICSE.2019.00107
25 May 2019-
Abstract: Deep learning (DL) systems are widely used in domains including aircraft collision avoidance systems, Alzheimer's disease diagnosis, and autonomous driving cars. Despite the requirement for high reliability, DL systems are difficult to test. Existing DL testing work focuses on testing the DL models, not the implementations (e.g., DL software libraries) of the models. One key challenge of testing DL libraries is the difficulty of knowing the expected output of DL libraries given an input instance. Fortunately, there are multiple implementations of the same DL algorithms in different DL libraries. Thus, we propose CRADLE, a new approach that focuses on finding and localizing bugs in DL software libraries. CRADLE (1) performs cross-implementation inconsistency checking to detect bugs in DL libraries, and (2) leverages anomaly propagation tracking and analysis to localize faulty functions in DL libraries that cause the bugs. We evaluate CRADLE on three libraries (TensorFlow, CNTK, and Theano), 11 datasets (including ImageNet, MNIST, and KGS Go game), and 30 pre-trained models. CRADLE detects 12 bugs and 104 unique inconsistencies, and highlights functions relevant to the causes of inconsistencies for all 104 unique inconsistencies.

...read more

58 Citations


Journal ArticleDOI: 10.1007/S11042-019-7179-2
Anju Unnikrishnan1, V. Sowmya1, K. P. Soman1Institutions (1)
Abstract: Classification of remotely sensed data requires the modelling of suitable image processing algorithms. The rise of machine learning systems upgraded the viability of satellite image applications. Using Convolutional Neural Networks (CNN), benchmark classification exactness can be accomplished for land cover grouping. Motivated by the concept of Normalized Difference Vegetation Index (NDVI), this paper utilizes only the red and near infrared (NIR) band information for classifying the publicly available SAT-4 and SAT-6 datasets. This is done, since NDVI computation requires only the two band (red and NIR) information and the classes involved in the dataset are types of vegetation. In this work, new deep learning architectures for three different networks (AlexNet, ConvNet, VGG) were proposed by hypertuning the network and the input as two band data. The modified architectures with the two band information along with reduced number of filters were trained and tested model manages to classify the images into different classes. The proposed architectures are compared against the existing architectures in terms of accuracy, precision and trainable parameters. The proposed architecture is found to perform equally efficient by retaining high accuracy with less number of trainable parameters, when compared against the the performance of benchmark deep learning architectures for satellite image classification.

...read more

14 Citations


Journal ArticleDOI: 10.1016/J.CATENA.2021.105189
01 Jun 2021-Catena
Abstract: Landslides are considered to be among the most alarming natural hazards. Therefore, there is a growing demand for databases and inventories of these events worldwide, since they are a vital resource for landslide risk assessment applications. Given the recent advances in the field of image processing, the objective of this study is to evaluate the performance of a deep convolutional neural network architecture called U-Net for the mapping of landslide scars from satellite imagery. The question that drives the study is: can fully convolutional neural networks be successfully applied as the backbone of automatic frameworks for building landslide inventories, keeping or improving the identification accuracy and agility when compared to other methods? To seek for an answer to it, scenes from the Landsat-8 satellite of a region of Nepal were obtained and processed in order to compose a landslide image database that served as the basis for the training, validation and test of deep convolutional neural networks. The U-Net architecture was applied and the results indicate that it has the potential to identify landslide scars, improving over previously published research on the topic for the same study region. The validation process resulted in recall, precision and F1-score values of 0.74, 0.61 and 0.67, respectively, thus higher than those from previous studies using different methodologies. The results indicate the potential of the method to be applied in dynamic mapping systems for landslide scar identification, which paves the way to the composition and updating of landslide scar databases. These, in turn, can support a great deal of quantitative landslide susceptibility mapping methods that heavily rely on data to provide accurate results.

...read more

Topics: Landslide (58%), Convolutional neural network (53%)

5 Citations


Open accessJournal ArticleDOI: 10.1155/2021/9998819
Abstract: In modern-day medicine, medical imaging has undergone immense advancements and can capture several biomedical images from patients. In the wake of this, to assist medical specialists, these images can be used and trained in an intelligent system in order to aid the determination of the different diseases that can be identified from analyzing these images. Classification plays an important role in this regard; it enhances the grouping of these images into categories of diseases and optimizes the next step of a computer-aided diagnosis system. The concept of classification in machine learning deals with the problem of identifying to which set of categories a new population belongs. When category membership is known, the classification is done on the basis of a training set of data containing observations. The goal of this paper is to perform a survey of classification algorithms for biomedical images. The paper then describes how these algorithms can be applied to a big data architecture by using the Spark framework. This paper further proposes the classification workflow based on the observed optimal algorithms, Support Vector Machine and Deep Learning as drawn from the literature. The algorithm for the feature extraction step during the classification process is presented and can be customized in all other steps of the proposed classification workflow.

...read more

Topics: Statistical classification (64%), Feature extraction (57%), Support vector machine (56%) ...read more

4 Citations



References
  More

Open accessProceedings Article
03 Dec 2012-
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

...read more

Topics: Convolutional neural network (61%), Deep learning (59%), Dropout (neural networks) (54%) ...read more

73,871 Citations


Open accessProceedings Article
Karen Simonyan1, Andrew Zisserman1Institutions (1)
01 Jan 2015-
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

...read more

49,857 Citations


Open accessProceedings Article
Karen Simonyan1, Andrew Zisserman1Institutions (1)
04 Sep 2014-
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

...read more

38,283 Citations


Journal ArticleDOI: 10.1038/NATURE14539
Yann LeCun1, Yann LeCun2, Yoshua Bengio3, Geoffrey E. Hinton4  +1 moreInstitutions (5)
28 May 2015-Nature
Abstract: Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

...read more

33,931 Citations


Open accessBook
18 Nov 2016-
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

...read more

Topics: Feature learning (61%), Deep learning (59%), Approximate inference (51%) ...read more

26,972 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20216
20202
20192