




Did you find this useful? Give us your feedback
14 citations
...DQA sets the threshold τ to 1.0 × 10−10 and adopts six initial values of , i.e., the solution of Han (2010), the three solutions of Závoti and Kalmár (2016), a biased one (solution 5 with initial value as 10) and a seriously biased one (solution 6 with initial value as 100)....
[...]
...For this situation, because the Han (2010) and Závoti and Kalmár (2016) do not consider the weight of control point when computing the solution of scale, all the four solutions (solution 1 to solution 4) just offer slightly biased initial values of ....
[...]
...2014; Závoti and Kalmár 2016; Zeng 2014; Zeng 2015; Zeng et al....
[...]
...The case study shows the presented algorithm requires one iteration to recover the transformation parameter if accurate initial value of scale is provided like the solutions no. 2 and 3 of Závoti and Kalmár (2016) for the situation that the weights are identical; otherwise,...
[...]
...Závoti and Kalmár (2016) presented three solutions of scale as follows. where xis, yis, zis are the centrobaric coordinates in the original coordinate system, i.e., (68) H = mean ���dx′ij ��� ��dxij �� i �= j, (69) Z1 = ∑n i=1 √ X2is + Y 2 is + Z 2 is ∑n i=1 √ x2is + y 2 is + z 2 is , (70) Z2…...
[...]
13 citations
12 citations
11 citations
...In the well-known Bursa–Wolf similarity 3D, seven parameter transformation (Helmert) model can be presented as follows (Deakin 2006; Závoti and Kalmár 2016):...
[...]
10 citations
...2006; Zeng and Yi 2011; Závoti and Kalmár 2016), Rodrigues matrix and Gibbs vector see (e.g. Zeng and Huang 2008; Zeng and Yi 2010; Závoti and Kalmár 2016; Zeng et al....
[...]
...Some papers have presented formulas of computing scale factor which is independent to the rotation angles and translation, e.g. Han (2010), Závoti and Kalmár (2016)....
[...]
...2006; Zeng 2015; Závoti and Kalmár 2016; Zeng et al....
[...]
4,522 citations
...(31): k ¼ 1 k X i DsTi Dsi ,X i DpTi Dpi ; ð33Þ which yields the well known Horn-Eq....
[...]
...Zeitschrift für Vermessungswesen 122:323–333 Horn BKP (1987) Closed form solution of absolute orientation using unit quaternions....
[...]
...Horn (1987) is one of the earliest works to give a solution to the absolute orientation problem, but his solution is different from Závoti (2012)....
[...]
...After taking into account that a root with physical meaning must be positive, we obtain for the lambda scale-factor the following equation, given in Horn (1987) using quaternions, which is also the solution of the Bursa–Wolf model: k2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn i¼1 X2is þ Y2is þ Z2isð Þ Pn i¼1 x2is þ y2is þ z2isð Þ vuuuuut : ð12Þ Thus we can obtain the unique k scale-factor from the quadratic equations as opposed to the complicated separation procedure of the roots of a polynomial of degree 4 given by Awange and Grafarend (2002)....
[...]
72 citations
...Shen et al. (2006) give the following equation for the rotation matrix R and the q quaternion: R ¼ q20 qT q I3 þ 2 q qT þ q0 C qð Þ : ð37Þ Now we can rewrite (35): max R X i DsTi R Dpi ¼ max q X i sTi Qþ Pþi q ¼ max q qT N q; ð38Þ where the 4x4 matrix N is given by N ¼ X i DsTi Dpi DsTi C Dpið Þ C…...
[...]
...…Þ C Dsið Þ Dpi Dsi DpTi þ C Dsið Þ C Dpið Þ : ð39Þ The maximum of the quadratic form (38) is obtained when q is an eigenvector of N, and then its value is equal to the eigenvalue of N (Shen et al. 2006), and thus we have to determine the maximal eigenvalue of N and the eigenvector q (the…...
[...]
46 citations
...The conventional treatment of the 3D, 7-parameter datum transformation is given in Grafarend and Krumm (1995), in Grafarend and Kampmann (1996), and in Grafarend and Shan (1997)....
[...]
29 citations
21 citations
...In the application of computer algebraic systems to datum transformations, Awange and Grafarend (2002, 2003a, b, c) have taken new directions. In Hungary, Závoti (2005) gives the first algebraic solution to the problem, and his solution also proposes correction to the mathematical model. Závoti and Jancsó (2006) give the basic idea for bringing the problem to linear form, and this concept is described in more detail in Závoti (2012). Battha and Závoti (2009a, b) have applied computerized algebra to the problem of the intersection problem. Závoti and Fritsch (2011) have given a totally new solution for the outer orientation problem of photogrammetry. Horn (1987) is one of the earliest works to give a solution to the absolute orientation problem, but his solution is different from Závoti (2012)....
[...]
...In the application of computer algebraic systems to datum transformations, Awange and Grafarend (2002, 2003a, b, c) have taken new directions. In Hungary, Závoti (2005) gives the first algebraic solution to the problem, and his solution also proposes correction to the mathematical model. Závoti and Jancsó (2006) give the basic idea for bringing the problem to linear form, and this concept is described in more detail in Závoti (2012). Battha and Závoti (2009a, b) have applied computerized algebra to the problem of the intersection problem. Závoti and Fritsch (2011) have given a totally new solution for the outer orientation problem of photogrammetry. Horn (1987) is one of the earliest works to give a solution to the absolute orientation problem, but his solution is different from Závoti (2012). Závoti and Kalmár (2014) give a good summary of the differences between the two solutions....
[...]
...In the application of computer algebraic systems to datum transformations, Awange and Grafarend (2002, 2003a, b, c) have taken new directions. In Hungary, Závoti (2005) gives the first algebraic solution to the problem, and his solution also proposes correction to the mathematical model....
[...]
...Subsequently Awange et al. (2004) has added extensions to the solutions....
[...]
...In the application of computer algebraic systems to datum transformations, Awange and Grafarend (2002, 2003a, b, c) have taken new directions. In Hungary, Závoti (2005) gives the first algebraic solution to the problem, and his solution also proposes correction to the mathematical model. Závoti and Jancsó (2006) give the basic idea for bringing the problem to linear form, and this concept is described in more detail in Závoti (2012). Battha and Závoti (2009a, b) have applied computerized algebra to the problem of the intersection problem. Závoti and Fritsch (2011) have given a totally new solution for the outer orientation problem of photogrammetry....
[...]