scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A comparison of machine learning classifiers for dementia with Lewy bodies using miRNA expression data.

TL;DR: The proposed prediction model provides an effective tool for DLB classification and predicted candidate target genes from the miRNAs, including 6 functional genes included in the DHA signaling pathway associated with DLB pathology.
Abstract: Dementia with Lewy bodies (DLB) is the second most common subtype of neurodegenerative dementia in humans following Alzheimer’s disease (AD). Present clinical diagnosis of DLB has high specificity and low sensitivity and finding potential biomarkers of prodromal DLB is still challenging. MicroRNAs (miRNAs) have recently received a lot of attention as a source of novel biomarkers. In this study, using serum miRNA expression of 478 Japanese individuals, we investigated potential miRNA biomarkers and constructed an optimal risk prediction model based on several machine learning methods: penalized regression, random forest, support vector machine, and gradient boosting decision tree. The final risk prediction model, constructed via a gradient boosting decision tree using 180 miRNAs and two clinical features, achieved an accuracy of 0.829 on an independent test set. We further predicted candidate target genes from the miRNAs. Gene set enrichment analysis of the miRNA target genes revealed 6 functional genes included in the DHA signaling pathway associated with DLB pathology. Two of them were further supported by gene-based association studies using a large number of single nucleotide polymorphism markers (BCL2L1: P = 0.012, PIK3R2: P = 0.021). Our proposed prediction model provides an effective tool for DLB classification. Also, a gene-based association test of rare variants revealed that BCL2L1 and PIK3R2 were statistically significantly associated with DLB.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A review of the current state of scientific knowledge on dementia with Lewy bodies can be found in this paper, where the authors identify specific symptoms, impairments, and functional disabilities that differ from those of other common types of dementia.
Abstract: Dementia with Lewy bodies (DLB) is the second commonest cause of neurodegenerative dementia in older people. It is part of the range of clinical presentations that share a neuritic pathology based on abnormal aggregation of the synaptic protein alpha-synuclein. DLB has many of the clinical and pathological characteristics of the dementia that occurs during the course of Parkinson's disease. Here we review the current state of scientific knowledge on DLB. Accurate identification of patients is important because they have specific symptoms, impairments, and functional disabilities that differ from those of other common types of dementia. Severe neuroleptic sensitivity reactions are associated with significantly increased morbidity and mortality. Treatment with cholinesterase inhibitors is well tolerated by most patients and substantially improves cognitive and neuropsychiatric symptoms. Clear guidance on the management of DLB is urgently needed. Virtually unrecognised 20 years ago, DLB could within this decade be one of the most treatable neurodegenerative disorders of late life.

47 citations

Journal ArticleDOI
TL;DR: A novel predictor named DeepAcet was developed to predict acetylation sites in proteins with many different features, and the predictive performance is better than that of other existing methods.
Abstract: Lysine acetylation in protein is one of the most important post-translational modifications (PTMs). It plays an important role in essential biological processes and is related to various diseases. To obtain a comprehensive understanding of regulatory mechanism of lysine acetylation, the key is to identify lysine acetylation sites. Previously, several shallow machine learning algorithms had been applied to predict lysine modification sites in proteins. However, shallow machine learning has some disadvantages. For instance, it is not as effective as deep learning for processing big data. In this work, a novel predictor named DeepAcet was developed to predict acetylation sites. Six encoding schemes were adopted, including a one-hot, BLOSUM62 matrix, a composition of K-space amino acid pairs, information gain, physicochemical properties, and a position specific scoring matrix to represent the modified residues. A multilayer perceptron (MLP) was utilized to construct a model to predict lysine acetylation sites in proteins with many different features. We also integrated all features and implemented the feature selection method to select a feature set that contained 2199 features. As a result, the best prediction achieved 84.95% accuracy, 83.45% specificity, 86.44% sensitivity, 0.8540 AUC, and 0.6993 MCC in a 10-fold cross-validation. For an independent test set, the prediction achieved 84.87% accuracy, 83.46% specificity, 86.28% sensitivity, 0.8407 AUC, and 0.6977 MCC. The predictive performance of our DeepAcet is better than that of other existing methods. DeepAcet can be freely downloaded from https://github.com/Sunmile/DeepAcet .

38 citations

Journal ArticleDOI
TL;DR: Accurate prediction of MCI-to-AD conversion would enable earlier intervention for MCI patients at high risk, potentially reducing conversion to AD.
Abstract: Mild cognitive impairment (MCI) is a precursor to Alzheimer’s disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of individuals at high risk for MCI-to-AD conversion are urgently required. We used blood-based microRNA expression profiles and genomic data of 197 Japanese MCI patients to construct a prognosis prediction model based on a Cox proportional hazard model. We examined the biological significance of our findings with single nucleotide polymorphism-microRNA pairs (miR-eQTLs) by focusing on the target genes of the miRNAs. We investigated functional modules from the target genes with the occurrence of hub genes though a large-scale protein-protein interaction network analysis. We further examined the expression of the genes in 610 blood samples (271 ADs, 248 MCIs, and 91 cognitively normal elderly subjects [CNs]). The final prediction model, composed of 24 miR-eQTLs and three clinical factors (age, sex, and APOE4 alleles), successfully classified MCI patients into low and high risk of MCI-to-AD conversion (log-rank test P = 3.44 × 10−4 and achieved a concordance index of 0.702 on an independent test set. Four important hub genes associated with AD pathogenesis (SHC1, FOXO1, GSK3B, and PTEN) were identified in a network-based meta-analysis of miR-eQTL target genes. RNA-seq data from 610 blood samples showed statistically significant differences in PTEN expression between MCI and AD and in SHC1 expression between CN and AD (PTEN, P = 0.023; SHC1, P = 0.049). Our proposed model was demonstrated to be effective in MCI-to-AD conversion prediction. A network-based meta-analysis of miR-eQTL target genes identified important hub genes associated with AD pathogenesis. Accurate prediction of MCI-to-AD conversion would enable earlier intervention for MCI patients at high risk, potentially reducing conversion to AD.

25 citations


Cites background from "A comparison of machine learning cl..."

  • ...As with genetic factors, microRNAs (miRNAs) have been examined as potential biomarkers for early AD prediction [15, 16]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the strengths and limitations of multi-omics analysis methods were explored and the issues and challenges associated with omics studies of Alzheimer's disease were highlighted, and future studies in this area of research were justified.

21 citations

Journal ArticleDOI
01 Jun 2022-Cells
TL;DR: The microRNA-associated networks which influence these pathologies, including inflammatory and viral-mediated pathways (such as the novel SARS-CoV-2 virus implicated in COVID-19), and their current status in clinical trials are discussed.
Abstract: The change from viewing noncoding RNA as “junk” in the genome to seeing it as a critical epigenetic regulator in almost every human condition or disease has forced a paradigm shift in biomedical and clinical research. Small and long noncoding RNA transcripts are now routinely evaluated as putative diagnostic or therapeutic agents. A prominent role for noncoding microRNAs in the central nervous system has uncovered promising new clinical candidates for dementia-related disorders, treatments for which currently remain elusive even as the percentage of diagnosed patients increases significantly. Cognitive decline is a core neurodegenerative process in Alzheimer’s Disease, Frontotemporal Dementia, Lewy body dementia, vascular dementia, Huntington’s Disease, Creutzfeldt–Jakob disease, and a significant portion of Parkinson’s Disease patients. This review will discuss the microRNA-associated networks which influence these pathologies, including inflammatory and viral-mediated pathways (such as the novel SARS-CoV-2 virus implicated in COVID-19), and their current status in clinical trials.

14 citations

References
More filters
Journal ArticleDOI
01 Oct 2001
TL;DR: Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the forest, and are also applicable to regression.
Abstract: Random forests are a combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. The generalization error for forests converges a.s. to a limit as the number of trees in the forest becomes large. The generalization error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the correlation between them. Using a random selection of features to split each node yields error rates that compare favorably to Adaboost (Y. Freund & R. Schapire, Machine Learning: Proceedings of the Thirteenth International conference, aaa, 148–156), but are more robust with respect to noise. Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the splitting. Internal estimates are also used to measure variable importance. These ideas are also applicable to regression.

79,257 citations

Journal ArticleDOI
28 May 2015-Nature
TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Abstract: Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

46,982 citations

Journal ArticleDOI
TL;DR: A new method for estimation in linear models called the lasso, which minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant, is proposed.
Abstract: SUMMARY We propose a new method for estimation in linear models. The 'lasso' minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint it tends to produce some coefficients that are exactly 0 and hence gives interpretable models. Our simulation studies suggest that the lasso enjoys some of the favourable properties of both subset selection and ridge regression. It produces interpretable models like subset selection and exhibits the stability of ridge regression. There is also an interesting relationship with recent work in adaptive function estimation by Donoho and Johnstone. The lasso idea is quite general and can be applied in a variety of statistical models: extensions to generalized regression models and tree-based models are briefly described.

40,785 citations


"A comparison of machine learning cl..." refers methods in this paper

  • ...We implemented ridge regression [14], elastic net [15] and lasso methods [16], known as penalized regression methods....

    [...]

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Journal ArticleDOI
TL;DR: It is shown that the elastic net often outperforms the lasso, while enjoying a similar sparsity of representation, and an algorithm called LARS‐EN is proposed for computing elastic net regularization paths efficiently, much like algorithm LARS does for the lamba.
Abstract: Summary. We propose the elastic net, a new regularization and variable selection method. Real world data and a simulation study show that the elastic net often outperforms the lasso, while enjoying a similar sparsity of representation. In addition, the elastic net encourages a grouping effect, where strongly correlated predictors tend to be in or out of the model together.The elastic net is particularly useful when the number of predictors (p) is much bigger than the number of observations (n). By contrast, the lasso is not a very satisfactory variable selection method in the

16,538 citations


"A comparison of machine learning cl..." refers methods in this paper

  • ...We implemented ridge regression [14], elastic net [15] and lasso methods [16], known as penalized regression methods....

    [...]