scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Comprehensive Computational Modeling Approach for AlGaN/GaN HEMTs

TL;DR: In this paper, the impact of surface and bulk traps on two-dimensional electron gas, device characteristics, and gate leakage is accounted for, and a new approach to accurately model the forward gate leakage in Schottky gate devices is proposed.
Abstract: This paper for the first time presents a comprehensive computational modeling approach for AlGaN/GaN high electron mobility transistors. Impact of the polarization charge at different material interfaces on the energy band profile as well as parasitic charge across the epitaxial stack is modeled and studied. Furthermore, impact of surface and bulk traps on two-dimensional electron gas, device characteristics, and gate leakage is accounted in this paper. For the first time, surface states modeled as donor type traps were correlated with gate leakage. Moreover, a new approach to accurately model the forward gate leakage in Schottky gate devices is proposed. Finally, impact of lattice and carrier heating is studied, while highlighting the relevance of carrier heating, lattice heating, and bulk traps over the device characteristics. In addition to this, modeling strategy for other critical aspects like parasitic charges, quantum effects, S/D Schottky contacts, and high field effects is presented.
Citations
More filters
Book ChapterDOI
26 Nov 2009

87 citations

Journal ArticleDOI
TL;DR: In this article, the effect of carbon-doping in GaN buffer on the performance of AlGaN/GaN HEMTs is discussed. But the authors focus on the degradation of the breakdown voltage, leakage current, sheet charge density, and dynamic ONresistance.
Abstract: Physics behind the improvement in breakdown voltage of AlGaN/GaN HEMTs with carbon-doping of GaN buffer is discussed. Modeling of carbon as acceptor traps and self-compensating acceptor/donor traps is discussed with respect to their impact on avalanche breakdown. Impact of carbon behaving as a donor as well as acceptor traps on electric field relaxation and avalanche generation is discussed in detail to establish the true nature of carbon in GaN that delays the avalanche action. This understanding of the behavior of carbon-doping in GaN buffer is then utilized to discuss design parameters related to carbon doped buffer. Design parameters such as undoped channel thickness and relative trap concentration induced by carbon-doping are discussed with respect to the performance metrics of breakdown voltage, leakage current, sheet charge density, and dynamic ON-resistance.

54 citations


Cites background or methods from "A Comprehensive Computational Model..."

  • ...These surface traps are taken to compensate hole density on surface [14] and the concentration value is selected so as to achieve the required nS and the gate leakage [14]....

    [...]

  • ...This hole density is attributed to polarization charges present at the GaN/AlN interface and is discussed in detail in our earlier work [14]....

    [...]

  • ...An unintentional (n-type) doping of 1×1015 cm−3 is considered in the GaN buffer [14]....

    [...]

  • ...reported in [14]....

    [...]

  • ...Modeling aspects related to channel transport, mobility, and sheet charge density (nS) were calibrated with experimental data according to framework described in our earlier work [14]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the breakdown behavior of drain-connected field plate-based GaN HEMTs was investigated and the proposed vertical and dual-field-plate designs were proposed to alleviate the channel electric field by uniformly distributing it vertically into the buffer region.
Abstract: TCAD studies are performed to develop physical insights into the breakdown behavior of drain-connected field plate-based GaN HEMTs. Using the developed insights, to mitigate the performance bottleneck caused by the lateral drain-connected field plate design, we have proposed novel vertical-field-plate designs. The proposed designs alleviate the channel electric field by uniformly distributing it vertically into the GaN buffer region. As a result, the proposed vertical and dual-field-plate design offer ${2} \times $ and ${3} \times $ improvements in breakdown voltage, respectively, compared with the design without field plate. Similarly, compared with a design with a lateral field plate, a 50% improvement in the breakdown voltage was seen with dual-field-plate architecture. RF power amplifier (PA) performance extracted using load-pull simulations demonstrates an improved RF PA linearity at higher drain bias, improved output power, efficiency, and PA gain for HEMTs with dual- and vertical-field-plate designs.

35 citations


Cites methods from "A Comprehensive Computational Model..."

  • ...Electron mobility, contact resistance, surface trap charges, and so on were calibrated with experimental data, which has been elaborated in our earlier work [23]....

    [...]

  • ...A well-calibrated Technology CAD setup, as described and used in our earlier works [23]–[25], has been used here....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a modified Si-doping profile in the GaN buffer is proposed to lower the Cdoping concentration near GaN channel to mitigate the adverse effects of acceptor traps.
Abstract: In part I of this paper, we developed physical insights into the role and impact of acceptor and donor traps—resulting from C-doping in GaN buffer—on avalanche breakdown in AlGaN/GaN HEMT devices. It was found that the donor traps are mandatory to explain the breakdown voltage improvement. In this paper, silicon doping is proposed and explored as an alternative to independently engineer donor trap concentration and profile. Keeping in mind the acceptor and donor trap relative concentration requirement for achieving higher breakdown buffer, as depicted in part I of this paper, silicon & carbon codoping of GaN buffer is proposed and explored in this paper. The proposed improvement in breakdown voltage is supported by physical insight into the avalanche phenomena and role of acceptor/donor traps. GaN buffer design parameters and their impact on breakdown voltage as well as leakage current are presented. Finally, a modified Si-doping profile in the GaN buffer is proposed to lower the C-doping concentration near GaN channel to mitigate the adverse effects of acceptor traps in GaN buffer.

31 citations


Cites background or methods from "A Comprehensive Computational Model..."

  • ...electron density, mobility and related transport parameters are calibrated with the experimental data as per the framework discussed in our earlier work [23]....

    [...]

  • ...the one described in our earlier work [23], and is discussed in...

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors show that the RON increase and decrease during stress and recovery experiments in carbon-doped AlGaN/GaN power metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs).
Abstract: RON degradation due to stress in GaN-based power devices is a critical issue that limits, among other effects, long-term stable operation. Here, by means of 2-D device simulations, we show that the RON increase and decrease during stress and recovery experiments in carbon-doped AlGaN/GaN power metal–insulator–semiconductor high electron mobility transistors (MIS-HEMTs) can be explained with a model based on the emission, redistribution, and retrapping of holes within the carbon-doped buffer (“hole redistribution” in short). By comparing simulation results with front- and back-gating OFF-state stress experiments, we provide an explanation for the puzzling observation of both stress and recovery transients being thermally activated with the same activation energy of about 0.9 eV. This finds a straightforward justification in a model in which both RON degradation and recovery processes are limited by hole emission by dominant carbon-related acceptors that are energetically located at about 0.9 eV from the GaN valence band.

30 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigated the role of spontaneous and piezoelectric polarization on the carrier confinement at GaN/AlGaN and AlGaN/GaN interfaces.
Abstract: Carrier concentration profiles of two-dimensional electron gases are investigated in wurtzite, Ga-face AlxGa1−xN/GaN/AlxGa1−xN and N-face GaN/AlxGa1−xN/GaN heterostructures used for the fabrication of field effect transistors. Analysis of the measured electron distributions in heterostructures with AlGaN barrier layers of different Al concentrations (0.15

2,581 citations

Journal ArticleDOI
TL;DR: In this paper, a combination of high resolution x-ray diffraction, atomic force microscopy, Hall effect, and capacitance-voltage profiling measurements is used to calculate the polarization induced sheet charge bound at the AlGaN/GaN interfaces.
Abstract: Two dimensional electron gases in Al x Ga 12x N/GaN based heterostructures, suitable for high electron mobility transistors, are induced by strong polarization effects. The sheet carrier concentration and the confinement of the two dimensional electron gases located close to the AlGaN/GaN interface are sensitive to a large number of different physical properties such as polarity, alloy composition, strain, thickness, and doping of the AlGaN barrier. We have investigated these physical properties for undoped and silicon doped transistor structures by a combination of high resolution x-ray diffraction, atomic force microscopy, Hall effect, and capacitance‐voltage profiling measurements. The polarization induced sheet charge bound at the AlGaN/GaN interfaces was calculated from different sets of piezoelectric constants available in the literature. The sheet carrier concentration induced by polarization charges was determined

1,439 citations

Journal ArticleDOI
TL;DR: In this paper, the origin of the two-dimensional electron gas (2DEG) in AlGaN/GaN heterostructure field effect transistors is examined theoretically and experimentally.
Abstract: The origin of the two-dimensional electron gas (2DEG) in AlGaN/GaN heterostructure field effect transistors is examined theoretically and experimentally. Based on an analysis of the electrostatics, surface states are identified as an important source of electrons. The role of the polarization-induced dipole is also clarified. Experimental Hall data for nominally undoped Al0.34Ga0.66N/GaN structures indicate that ∼1.65 eV surface donors are the actual source of the electrons in the 2DEG, which forms only when the barrier thickness exceeds 35 A.

1,015 citations


"A Comprehensive Computational Model..." refers background in this paper

  • ...[24] suggested that polarization charges alone are not sufficient to explain 2DEG profile and proposed that sur-...

    [...]

Journal ArticleDOI
TL;DR: In this paper, an analytical expression for the electron and hole mobility in silicon based on both experimental data and modified Brooks-Herring theory of mobility was derived, which allows one to obtain electron and holes mobility as a function of concentration up to \sim 10^{20} cm-3 in an extended and continuous temperature range (250-500 K) within ± 13 percent of the reported experimental values.
Abstract: An analytical expression has been derived for the electron and hole mobility in silicon based on both experimental data and modified Brooks-Herring theory of mobility. The resulting expression allows one to obtain electron and hole mobility as a function of concentration up to \sim 10^{20} cm-3in an extended and continuous temperature range (250-500 K) within ± 13 percent of the reported experimental values.

886 citations


Additional excerpts

  • ...in [37] and Farahmand et al....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors reported the highest reported microwave power density for undoped sapphire substrated AlGaN/GaN HEMT's on the same wafer.
Abstract: Surface passivation of undoped AlGaN/CaN HEMT's reduces or eliminates the surface effects responsible for limiting both the RF current and breakdown voltages of the devices. Power measurements on a 2/spl times/125/spl times/0.5 /spl mu/m AlGaN/GaN sapphire based HEMT demonstrate an increase in 4 GHz saturated output power from 1.0 W/mm [36% peak power-added efficiency (PAE)] to 2.0 W/mm (46% peak PAE) with 15 V applied to the drain in each case. Breakdown measurement data show a 25% average increase in breakdown voltage for 0.5 /spl mu/m gate length HEMT's on the same wafer. Finally, 4 GHz power sweep data for a 2/spl times/75/spl times/0.4 /spl mu/m AlGaN/GaN HEMT on sapphire processed using the Si/sub 3/N/sub 4/ passivation layer produced 4.0 W/mm saturated output power at 41% PAE (25 V drain bias). This result represents the highest reported microwave power density for undoped sapphire substrated AlGaN/GaN HEMT's.

752 citations


"A Comprehensive Computational Model..." refers background in this paper

  • ...Mitigation of RF dispersion [25], [26], drain and gate lag effects...

    [...]

Related Papers (5)