scispace - formally typeset
Open accessPosted Content

A Comprehensive Study on Face Recognition Biases Beyond Demographics

Abstract: Face recognition (FR) systems have a growing effect on critical decision-making processes. Recent works have shown that FR solutions show strong performance differences based on the user's demographics. However, to enable a trustworthy FR technology, it is essential to know the influence of an extended range of facial attributes on FR beyond demographics. Therefore, in this work, we analyse FR bias over a wide range of attributes. We investigate the influence of 47 attributes on the verification performance of two popular FR models. The experiments were performed on the publicly available MAADFace attribute database with over 120M high-quality attribute annotations. To prevent misleading statements about biased performances, we introduced control group based validity values to decide if unbalanced test data causes the performance differences. The results demonstrate that also many non-demographic attributes strongly affect the recognition performance, such as accessories, hair-styles and colors, face shapes, or facial anomalies. The observations of this work show the strong need for further advances in making FR system more robust, explainable, and fair. Moreover, our findings might help to a better understanding of how FR networks work, to enhance the robustness of these networks, and to develop more generalized bias-mitigating face recognition solutions.

... read more

Citations
  More

14 results found


Open accessPosted Content
Abstract: Over the past two decades, biometric recognition has exploded into a plethora of different applications around the globe. This proliferation can be attributed to the high levels of authentication accuracy and user convenience that biometric recognition systems afford end-users. However, in-spite of the success of biometric recognition systems, there are a number of outstanding problems and concerns pertaining to the various sub-modules of biometric recognition systems that create an element of mistrust in their use - both by the scientific community and also the public at large. Some of these problems include: i) questions related to system recognition performance, ii) security (spoof attacks, adversarial attacks, template reconstruction attacks and demographic information leakage), iii) uncertainty over the bias and fairness of the systems to all users, iv) explainability of the seemingly black-box decisions made by most recognition systems, and v) concerns over data centralization and user privacy. In this paper, we provide an overview of each of the aforementioned open-ended challenges. We survey work that has been conducted to address each of these concerns and highlight the issues requiring further attention. Finally, we provide insights into how the biometric community can address core biometric recognition systems design issues to better instill trust, fairness, and security for all.

... read more

Topics: Biometrics (53%)

5 Citations


Open accessPosted Content
Alejandro Peña1, Ignacio Serna1, Aythami Morales1, Julian Fierrez1  +1 moreInstitutions (2)
Abstract: This work explores facial expression bias as a security vulnerability of face recognition systems. Despite the great performance achieved by state-of-the-art face recognition systems, the algorithms are still sensitive to a large range of covariates. We present a comprehensive analysis of how facial expression bias impacts the performance of face recognition technologies. Our study analyzes: i) facial expression biases in the most popular face recognition databases; and ii) the impact of facial expression in face recognition performances. Our experimental framework includes two face detectors, three face recognition models, and three different databases. Our results demonstrate a huge facial expression bias in the most widely used databases, as well as a related impact of face expression in the performance of state-of-the-art algorithms. This work opens the door to new research lines focused on mitigating the observed vulnerability.

... read more

2 Citations


Open accessJournal ArticleDOI: 10.1109/TIFS.2021.3096120
Philipp Terhorst1, Daniel Fahrmann1, Jan Niklas Kolf1, Naser Damer1  +2 moreInstitutions (1)
Abstract: Soft-biometrics play an important role in face biometrics and related fields since these might lead to biased performances, threaten the user’s privacy, or are valuable for commercial aspects. Current face databases are specifically constructed for the development of face recognition applications. Consequently, these databases contain a large number of face images but lack in the number of attribute annotations and the overall annotation correctness. In this work, we propose a novel annotation-transfer pipeline that allows to accurately transfer attribute annotations from multiple source datasets to a target dataset. The transfer is based on a massive attribute classifier that can accurately state its prediction confidence. Using these prediction confidences, a high correctness of the transferred annotations is ensured. Applying this pipeline to the VGGFace2 database, we propose the MAAD-Face annotation database. It consists of 3.3M faces of over 9k individuals and provides 123.9M attribute annotations of 47 different binary attributes. Consequently, it provides 15 and 137 times more attribute annotations than CelebA and LFW. Our investigation on the annotation quality by three human evaluators demonstrated the superiority of the MAAD-Face annotations over existing databases. Additionally, we make use of the large number of high-quality annotations from MAAD-Face to study the viability of soft-biometrics for recognition, providing insights into which attributes support genuine and imposter decisions. The MAAD-Face annotations dataset is publicly available.

... read more

Topics: Annotation (50%)

Open accessPosted Content
Hannah Rose Kirk1, Yennie Jun, Paulius Rauba, Gal Wachtel  +6 moreInstitutions (1)
Abstract: Hateful memes pose a unique challenge for current machine learning systems because their message is derived from both text- and visual-modalities. To this effect, Facebook released the Hateful Memes Challenge, a dataset of memes with pre-extracted text captions, but it is unclear whether these synthetic examples generalize to `memes in the wild'. In this paper, we collect hateful and non-hateful memes from Pinterest to evaluate out-of-sample performance on models pre-trained on the Facebook dataset. We find that memes in the wild differ in two key aspects: 1) Captions must be extracted via OCR, injecting noise and diminishing performance of multimodal models, and 2) Memes are more diverse than `traditional memes', including screenshots of conversations or text on a plain background. This paper thus serves as a reality check for the current benchmark of hateful meme detection and its applicability for detecting real world hate.

... read more


Open accessPosted Content
Abstract: Algorithmic decision systems have frequently been labelled as "biased", "racist", "sexist", or "unfair" by numerous media outlets, organisations, and researchers. There is an ongoing debate about whether such assessments are justified and whether citizens and policymakers should be concerned. These and other related matters have recently become a hot topic in the context of biometric technologies, which are ubiquitous in personal, commercial, and governmental applications. Biometrics represent an essential component of many surveillance, access control, and operational identity management systems, thus directly or indirectly affecting billions of people all around the world. Recently, the European Association for Biometrics organised an event series with "demographic fairness in biometric systems" as an overarching theme. The events featured presentations by international experts from academic, industry, and governmental organisations and facilitated interactions and discussions between the experts and the audience. Further consultation of experts was undertaken by means of a questionnaire. This work summarises opinions of experts and findings of said events on the topic of demographic fairness in biometric systems including several important aspects such as the developments of evaluation metrics and standards as well as related issues, e.g. the need for transparency and explainability in biometric systems or legal and ethical issues.

... read more

Topics: Transparency (graphic) (52%)

References
  More

68 results found


Open accessProceedings ArticleDOI: 10.1109/CVPR.2015.7298682
07 Jun 2015-
Abstract: Despite significant recent advances in the field of face recognition [10, 14, 15, 17], implementing face verification and recognition efficiently at scale presents serious challenges to current approaches. In this paper we present a system, called FaceNet, that directly learns a mapping from face images to a compact Euclidean space where distances directly correspond to a measure of face similarity. Once this space has been produced, tasks such as face recognition, verification and clustering can be easily implemented using standard techniques with FaceNet embeddings as feature vectors.

... read more

Topics: Three-dimensional face recognition (73%), Face detection (63%), Object-class detection (62%) ... read more

8,289 Citations


Open accessProceedings ArticleDOI: 10.1109/ICCV.2015.425
Ziwei Liu1, Ping Luo, Xiaogang Wang1, Xiaoou Tang1Institutions (1)
07 Dec 2015-
Abstract: Predicting face attributes in the wild is challenging due to complex face variations. We propose a novel deep learning framework for attribute prediction in the wild. It cascades two CNNs, LNet and ANet, which are fine-tuned jointly with attribute tags, but pre-trained differently. LNet is pre-trained by massive general object categories for face localization, while ANet is pre-trained by massive face identities for attribute prediction. This framework not only outperforms the state-of-the-art with a large margin, but also reveals valuable facts on learning face representation. (1) It shows how the performances of face localization (LNet) and attribute prediction (ANet) can be improved by different pre-training strategies. (2) It reveals that although the filters of LNet are fine-tuned only with image-level attribute tags, their response maps over entire images have strong indication of face locations. This fact enables training LNet for face localization with only image-level annotations, but without face bounding boxes or landmarks, which are required by all attribute recognition works. (3) It also demonstrates that the high-level hidden neurons of ANet automatically discover semantic concepts after pre-training with massive face identities, and such concepts are significantly enriched after fine-tuning with attribute tags. Each attribute can be well explained with a sparse linear combination of these concepts.

... read more

3,923 Citations


Open accessProceedings ArticleDOI: 10.1109/CVPR.2014.241
Vahid Kazemi1, Josephine Sullivan1Institutions (1)
23 Jun 2014-
Abstract: This paper addresses the problem of Face Alignment for a single image. We show how an ensemble of regression trees can be used to estimate the face's landmark positions directly from a sparse subset of pixel intensities, achieving super-realtime performance with high quality predictions. We present a general framework based on gradient boosting for learning an ensemble of regression trees that optimizes the sum of square error loss and naturally handles missing or partially labelled data. We show how using appropriate priors exploiting the structure of image data helps with efficient feature selection. Different regularization strategies and its importance to combat overfitting are also investigated. In addition, we analyse the effect of the quantity of training data on the accuracy of the predictions and explore the effect of data augmentation using synthesized data.

... read more

Topics: Gradient boosting (64%), Overfitting (58%), Boosting (machine learning) (55%) ... read more

2,076 Citations


Open accessProceedings ArticleDOI: 10.1109/CVPR.2019.00482
15 Jun 2019-
Abstract: One of the main challenges in feature learning using Deep Convolutional Neural Networks (DCNNs) for large-scale face recognition is the design of appropriate loss functions that can enhance the discriminative power. Centre loss penalises the distance between deep features and their corresponding class centres in the Euclidean space to achieve intra-class compactness. SphereFace assumes that the linear transformation matrix in the last fully connected layer can be used as a representation of the class centres in the angular space and therefore penalises the angles between deep features and their corresponding weights in a multiplicative way. Recently, a popular line of research is to incorporate margins in well-established loss functions in order to maximise face class separability. In this paper, we propose an Additive Angular Margin Loss (ArcFace) to obtain highly discriminative features for face recognition. The proposed ArcFace has a clear geometric interpretation due to its exact correspondence to geodesic distance on a hypersphere. We present arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks which includes a new large-scale image database with trillions of pairs and a large-scale video dataset. We show that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead. To facilitate future research, the code has been made available.

... read more

Topics: Facial recognition system (56%), Convolutional neural network (53%), Feature learning (53%) ... read more

1,806 Citations


Open accessProceedings ArticleDOI: 10.1109/FG.2018.00020
Qiong Cao1, Li Shen1, Weidi Xie1, Omkar M. Parkhi1  +1 moreInstitutions (1)
15 May 2018-
Abstract: In this paper, we introduce a new large-scale face dataset named VGGFace2. The dataset contains 3.31 million images of 9131 subjects, with an average of 362.6 images for each subject. Images are downloaded from Google Image Search and have large variations in pose, age, illumination, ethnicity and profession (e.g. actors, athletes, politicians). The dataset was collected with three goals in mind: (i) to have both a large number of identities and also a large number of images for each identity; (ii) to cover a large range of pose, age and ethnicity; and (iii) to minimise the label noise. We describe how the dataset was collected, in particular the automated and manual filtering stages to ensure a high accuracy for the images of each identity. To assess face recognition performance using the new dataset, we train ResNet-50 (with and without Squeeze-and-Excitation blocks) Convolutional Neural Networks on VGGFace2, on MS-Celeb-1M, and on their union, and show that training on VGGFace2 leads to improved recognition performance over pose and age. Finally, using the models trained on these datasets, we demonstrate state-of-the-art performance on the IJB-A and IJB-B face recognition benchmarks, exceeding the previous state-of-the-art by a large margin. The dataset and models are publicly available.

... read more

Topics: Pose (53%), Facial recognition system (50%)

1,471 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
202113
20201
Network Information
Related Papers (5)