scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Comprehensive Survey on Microgrippers Design: Operational Strategy

01 Jul 2017-Journal of Mechanical Design (American Society of Mechanical Engineers Digital Collection)-Vol. 139, Iss: 7, pp 070801
About: This article is published in Journal of Mechanical Design.The article was published on 2017-07-01. It has received 66 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: Nonlinear model order reduction methods are applied in Eletrothermal microgrippers and the effectiveness of the reduction method is shown through simulation results at various levels.

3 citations

Proceedings ArticleDOI
20 Jun 2021
TL;DR: In this article, robust microfabricated MEMS electrostatic inchworm motors were used to move macroscopic objects at up to 5mm/s with 3mm displacement and 15mN force.
Abstract: We report robust microfabricated MEMS electrostatic inchworm motors moving macroscopic objects: a motor in a $14.5\times 9.5\times 1.2\text{mm}$ gripper with 3mm displacement and 15mN force lifting a 1g weight, and an identical motor moving a 100mm long 230mg shuttle an 80mm distance horizontally at up to 5mm/s. This is an order of magnitude larger than previous electrostatic inchworm motors and demonstrates competitiveness with piezoelectric motors for millimeter-scale actuation for microrobotics.

3 citations

Journal ArticleDOI
TL;DR: In this paper , a detailed multibody system (MBS) model that includes not only rigid-body dynamics but also elastic forces, friction, and impacts is proposed, and the results confirm that the proposed model outcomes comply with the most reliable models.
Abstract: A dynamic model of a Conjugate-Surface Flexure Hinge (CSFH) has been proposed as a component for MEMS/NEMS Technology-based devices with lumped compliance. However, impacts between the conjugate surfaces have not been studied yet and, therefore, this paper attempts to fill this gap by proposing a detailed multibody system (MBS) model that includes not only rigid-body dynamics but also elastic forces, friction, and impacts. Two models based on the Lankarani-Nikravesh constitutive law are first recalled and a new model based on the contact of cylinders is proposed. All three models are complemented by the friction model proposed by Ambrosìo. Then, the non-smooth Moreau time-stepping scheme with Coulomb friction is described. The four models are compared in different scenarios and the results confirm that the proposed model outcomes comply with the most reliable models.

2 citations

Journal ArticleDOI
TL;DR: In this paper , a hybrid actuation mode for piezoelectric actuators is proposed to improve speeds in cross-scale micromanipulations, based on the wobbling and jumping gaits of the cricket.

2 citations

Journal ArticleDOI
TL;DR: In this article , a method for fabrication of thermally actuated liquid crystal elastomers (LCE) beams for in-plane bending applications, which is based on direct laser writing and micromolding is reported.
Abstract: The remarkable properties of liquid crystal elastomers (LCE) for spatially controlled actuation are utilized to perform complex tasks such as to mimic versatile motion of living organisms and cilia in soft robotics. As opposed to the common out‐of‐plane bending in flat LCE films, many planar micro‐electro‐mechanical and microfluidic systems typically operate based on the lateral movement of the functional parts. The challenge of implementing the in‐plane bending of LCE actuators is often associated with the limited capability for miniaturization of the existing techniques, along with the requirement for post‐fabrication assembly. In this paper a method for fabrication of thermally actuated LCE beams for in‐plane bending applications, which is based on direct laser writing and micromolding is reported. Mesogenic alignment is modified near the sidewalls of the channel structures patterned with vertical microgrooves. The method allows monolithic fabrication of LCE‐based microgrippers for micromanipulation and microassembly applications in life sciences and in manufacture of microsystems. It is shown that the photothermally driven microgrippers can perform soft grasping of micro‐objects, providing large gripping strokes with relatively low actuation stimuli. The fabrication method offers more design opportunities for LCE‐based microactuators and a useful route toward realization of gripping and cargo transportation functionality in microrobotics.

2 citations

References
More filters
Book
07 Jun 1995
TL;DR: Striking a balance between theory and applications, Linear System Theory and Design, 3/e, is ideal for use in advanced undergraduate/first-year graduate courses in linear systems and multivariable system design in electrical, mechanical, chemical, and aeronautical engineering departments.
Abstract: From the Publisher: An extensive revision of the author's highly successful text, this third edition of Linear System Theory and Design has been made more accessible to students from all related backgrounds. After introducing the fundamental properties of linear systems, the text discusses design using state equations and transfer functions. The two main objectives of the text are to: use simple and efficient methods to develop results and design procedures; enable students to employ the results to carry out design. Striking a balance between theory and applications, Linear System Theory and Design, 3/e, is ideal for use in advanced undergraduate/first-year graduate courses in linear systems and multivariable system design in electrical, mechanical, chemical, and aeronautical engineering departments. It assumes a working knowledge of linear algebra and the Laplace transform and an elementary knowledge of differential equations.

4,017 citations

Journal ArticleDOI
TL;DR: A new conceptually simple approach to controlling compliant motions of a robot manipulator that combines force and torque information with positional data to satisfy simultaneous position and force trajectory constraints specified in a convenient task related coordinate system is presented.
Abstract: A new conceptually simple approach to controlling compliant motions of a robot manipulator is presented. The 'hybrid' technique described combines force and torque information with positional data to satisfy simultaneous position and force trajectory constraints specified in a convenient task related coordinate system. Analysis, simulation, and experiments are used to evaluate the controller's ability to execute trajectories using feedback from a force sensing wrist and from position sensors found in the manipulator joints. The results show that the method achieves stable, accurate control of force and position trajectories for a variety of test conditions.

2,991 citations

Book
01 Jan 2002
TL;DR: In this paper, a comparison of top-down and bottom-up manufacturing methods for micro-manufacturing is presented, with a focus on the use of micro-processors.
Abstract: LITHOGRAPHY Introduction Historical Note: Lithography's Origins Photolithography Overview Critical Dimension, Overall Resolution, Line-Width Lithographic Sensitivity and Intrinsic Resist Sensitivity (Photochemical Quantum Efficiency) Resist Profiles Contrast and Experimental Determination of Lithographic Sensitivity Resolution in Photolithography Photolithography Resolution Enhancement Technology Beyond Moore's Law Next Generation Lithographies Emerging Lithography Technologies PATTERN TRANSFER WITH DRY ETCHING TECHNIQUES Introduction Dry Etching: Definitions and Jargon Plasmas or Discharges Physical Etching: Ion Etching or Sputtering and Ion-Beam Milling Plasma Etching (Radical Etching) Physical/Chemical Etching PATTERN TRANSFER WITH ADDITIVE TECHNIQUES Introduction Silicon Growth Doping of Si Oxidation of Silicon Physical Vapor Deposition Chemical Vapor Deposition Silk-Screening or Screen-Printing Sol-Gel Deposition Technique Doctors' Blade or Tape Casting Plasma Spraying Deposition and Arraying Methods of Organic Layers in BIOMEMS Thin versus Thick Film Deposition Selection Criteria for Deposition Method WET BULK MICROMACHINING Introduction Historical Note Silicon Crystallography Silicon As Substrate Silicon As A Mechanical Element In MEMS Wet Isotropic And Anisotropic Etching Alignment Patterns Chemical Etching Models Etching With Bias And/Or Illumination Of The Semiconductor Etch-Stop Techniques Problems With Wet Bulk Micromachining SURFACE MICROMACHINING Introduction Historical Note Mechanical Properties of Thin Films Surface Micromachining Processes Poly-Si Surface Micromachining Modifications Non-Poly-Si Surface Micromachining Modifications Materials Case Studies LIGA AND MICROMOLDING Introduction LIGA-Background LIGA and LIGA-Like Process Steps A COMPARISON OF MINIATURIZATION TECHNIQUES: TOP-DOWN AND BOTTOM-UP MANUFACTURING Introduction Absolute and Relative Tolerance in Manufacturing Historical Note: Human Manufacturing Section I: Top-Down Manufacturing Methods Section II: Bottom-Up Approaches MODELING, BRAINS, PACKAGING, SAMPLE PREPARATION AND NEW MEMS MATERIALS Introduction Modeling Brains In Miniaturization Packaging Substrate Choice SCALING, ACTUATORS, AND POWER IN MINIATURIZED SYSTEMS Introduction Scaling Actuators Fluidics Scaling In Analytical Separation Equipment Other Actuators Integrated Power MINIATURIZATION APPLICATIONS Introduction Definitions and Classification Method Decision Three OVERALL MARKET For MICROMACHINES Introduction Why Use Miniaturization Technology ? From Perception to Realization Overall MEMS Market Size MEMS Market Character MEMS Based on Si Non-Silicon MEMS MEMS versus Traditional Precision Engineering The Times are a'Changing APPENDICES Metrology Techniques WWW Linkpage Etch Rate for Si, SiO2 Summary of Top-Down Miniaturization Tools Listing of names of 20 amino acids & their chemical formulas Genetic code Summary of Materials and Their Properties for Microfabrication References for Detailed Market Information on Miniature Devices MEMS Companies Update Suggested Further Reading Glossary Symbols used in Text INDEX Each chapter also contains sections of examples and problems

1,930 citations

Book
01 Jan 2001
TL;DR: In this article, a minor numerical error in going from Eq. 16.39 to eq.16.40 is found, which has an obvious effect on the calculations that follow, increasing the minimum detectable temperature change to about 2 mK.
Abstract: p. 445 There is a minor numerical error in going from Eq. 16.39 to Eq. 16.40. The factor of 2 in the 1/f term was omitted, so the correct numerator for the second term in Eq. 16.40 is 1.44 x 10 -7 . This error has an obvious effect on the calculations that follow, increasing the minimum detectable temperature change to about 2 mK (Eq. 16.44) and, correspondingly, increasing the RMS noise calculated from Eq. 16.49 by sqrt(2).

1,917 citations

Journal ArticleDOI
Charles S. Smith1
TL;DR: In this article, the complete tensor piezoresistance has been determined experimentally for these materials and expressed in terms of the pressure coefficient of resistivity and two simple shear coefficients.
Abstract: Uniaxial tension causes a change of resistivity in silicon and germanium of both $n$ and $p$ types. The complete tensor piezoresistance has been determined experimentally for these materials and expressed in terms of the pressure coefficient of resistivity and two simple shear coefficients. One of the shear coefficients for each of the materials is exceptionally large and cannot be explained in terms of previously known mechanisms. A possible microscopic mechanism proposed by C. Herring which could account for one large shear constant is discussed. This so called electron transfer effect arises in the structure of the energy bands of these semiconductors, and piezoresistance may therefore give important direct experimental information about this structure.

1,779 citations