scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Comprehensive Survey on Microgrippers Design: Operational Strategy

01 Jul 2017-Journal of Mechanical Design (American Society of Mechanical Engineers Digital Collection)-Vol. 139, Iss: 7, pp 070801
About: This article is published in Journal of Mechanical Design.The article was published on 2017-07-01. It has received 66 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: A review of electrothermal micro-actuators and applications is presented in this paper, where the three main configurations of electro-thermal actuators are discussed: hot-and-cold-arm, chevron, and bimorph.
Abstract: This paper presents a review of electrothermal micro-actuators and applications. Electrothermal micro-actuators have been a significant research interest over the last two decades, and many different designs and applications have been investigated. The electrothermal actuation method offers several advantages when compared with the other types of actuation approaches based on electrostatic and piezoelectric principles. The electrothermal method offers flexibility in the choice of materials, low-cost fabrication, and large displacement capabilities. The three main configurations of electrothermal actuators are discussed: hot-and-cold-arm, chevron, and bimorph types as well as a few other unconventional actuation approaches. Within each type, trends are outlined from the basic concept and design modifications to applications which have been investigated in order to enhance the performance or to overcome the limitations of the previous designs. It provides a grasp of the actuation methodology, design, and fabrication, and the related performance and applications in cell manipulation, micro assembly, and mechanical testing of nanomaterials, Radio Frequency (RF) switches, and optical Micro-Electro-Mechanical Systems (MEMS).

66 citations

Journal ArticleDOI
TL;DR: This paper is concentrated on reviewing the state-of-the-art research on complaint micro-/nano-positioning stage design in recent years and involves the major processes and components for designing a compliant positioning stage, e.g., actuator selection, stroke amplifier design, connecting scheme of the multi-DOF stage and structure optimization.
Abstract: Micromanipulation is a hot topic due to its enabling role in various research fields. In order to perform a high precision operation at a small scale, compliant mechanisms have been proposed and applied for decades. In microscale manipulation, micro-/nano-positioning is the most fundamental operation because a precision positioning is the premise of subsequent operations. This paper is concentrated on reviewing the state-of-the-art research on complaint micro-/nano-positioning stage design in recent years. It involves the major processes and components for designing a compliant positioning stage, e.g., actuator selection, stroke amplifier design, connecting scheme of the multi-DOF stage and structure optimization. The review provides a reference to design a compliant micro-/nano-positioning stage for pertinent applications.

59 citations

Journal ArticleDOI
TL;DR: A CSFH has been analyzed with both theoretical and finite element methods, in order to obtain the relation between voltage and generated torque, and showed that CSFH performs better than linear flexure hinges in terms of larger rotations and less stress for given applied voltage.
Abstract: Progress in MEMS technology continuously stimulates new developments in the mechanical structure of micro systems, such as, for example, the concept of so-called CSFH (conjugate surfaces flexural hinge), which makes it possible, simultaneously, to minimize the internal stresses and to increase motion range and robustness. Such a hinge may be actuated by means of a rotary comb-drive, provided that a proper set of simulations and tests are capable to assess its feasibility. In this paper, a CSFH has been analyzed with both theoretical and finite element (FEM) methods, in order to obtain the relation between voltage and generated torque. The FEM model considers also the fringe effect on the comb drive finger. Electromechanical couple–field analysis is performed by means of both direct and load transfer methods. Experimental tests have been also performed on a CSFH embedded in a MEMS prototype, which has been fabricated starting from a SOI wafer and using D–RIE (deep reactive ion etching). Results showed that CSFH performs better than linear flexure hinges in terms of larger rotations and less stress for given applied voltage.

32 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the recent advances on performance indices, classification, structural composition, optimization and modeling method, and control of PEACM and provided a guideline on further development of the micro gripper.
Abstract: The piezoelectric-actuated compliant microgripper (PEACM) plays an essential role in the application fields such as biomedical engineering, microelectronics, and optical engineering. As compared with other categories of grippers, PEACM exhibits the advantages of high accuracy of displacement, large power to weight ratio, low energy consumption, and fast response speed. This paper reviews the recent advances on performance indices, classification, structural composition, optimization and modeling method, and control of PEACM. First, the gripper's performance indices and classifications are elaborated, which is beneficial to determine the design goal. Then, the compliant mechanisms adopted in the microgripper design are discussed, including the flexible hinge, displacement amplifier, and guiding mechanism. In addition, the optimization and modeling methods of the microgripper are presented. Popular types of position/force sensors and different displacement/force control strategies employed in the microgripper are surveyed. Moreover, the prospect on future development trend of the PEACM is discussed. The paper provides the reader with an overview of the recent advances on PEACM design and also a guideline on further development of the microgripper.

32 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors describe an electrostatically actuated silicon nanotweezers which are intended for the manipulation and characterization of filamentary molecules, and demonstrate their performance in static and dynamic manipulation on DNA molecules.
Abstract: We describe electrostatically actuated silicon nanotweezers which are intended for the manipulation and characterization of filamentary molecules. The microelectromechanical system consists of a pair of opposing tips whose distance can be accurately adjusted by means of an integrated differential capacitive sensor. The fabrication process is based on silicon-on-insulator technology and combines KOH wet anisotropic etching and deep reactive ion etching of silicon to form sharp nanotips and high aspect ratio microstructures, respectively. In the designed prototype, the initial gap between the tips was around 20 mum. The device showed a maximum displacement of about 2.5 mum, and we could achieve a resolution better than 0.2 nm (in static mode). We measured a resonant frequency of 2.5 kHz and a quality factor (Q factor) of 50 in air. The instrument was used to perform static and dynamic mechanical manipulations on DNA molecules, and we could distinctly observe the viscoelastic behavior of DNA bundles from these experiments.

112 citations

Journal ArticleDOI
TL;DR: In this paper, the inverse of the manipulator Jacobian matrix is identified as causing the kinematic instability of the hybrid position/force control scheme, and sufficient conditions for kine matic stability are proposed to determine when a system may become unstable without requiring a complete system analysis.
Abstract: This article will show conclusively that "kinematic instability" is not inherent to the hybrid position/force control scheme of robot manipulators but is a result of an incomplete and inap propriate formulation. The inverse of the manipulator Jacobian matrix is identified as causing the kinematic instability of the hybrid position/force control scheme. Linear algebra is used to explain clearly the implications of mapping between vec tor spaces and to reveal why the inverse of the manipulator Jacobian matrix should not be used in hybrid position/force control. A generalized architecture for hybrid position/force control is presented that can influence both joint positions and torques. This generalized formulation also includes the control of redundant manipulators. Some sufficient conditions for kine matic stability are proposed to determine when a system may become unstable without requiring a complete system analysis. A stable hybrid position/force control scheme is given and is demonstrated using an exa...

109 citations

Proceedings ArticleDOI
26 Jan 1997
TL;DR: In this paper, a prototype system for teleoperated microassembly with high aspect ratio molded polysilicon tweezers with integrated in-situ phosphorous doped thermal expansion actuator beams and piezoresistor strain gages for tactile feedback is described.
Abstract: This paper describes essential components of a prototype system for teleoperated microassembly. High aspect ratio molded polysilicon (hexsil) tweezers with integrated in-situ phosphorous doped thermal expansion actuator beams and piezoresistive polysilicon strain gages for tactile feedback are described. The tweezers are normally closed, and require 75 mW to open 35 /spl mu/m. Piezoresistor performance remains to be measured. Metal lines on surface polysilicon flexible electrical interconnects bridge between rotating rigid hexsil beams. Surface polysilicon tweezer tips provide compliance suitable for force-controlled micromanipulation. The task demonstrated is the pick and placement of a 1 /spl mu/m/spl times/4 /spl mu/m/spl times/40 /spl mu/m peg in a 4 /spl mu/m/spl times/4 /spl mu/m hole. The test parts used were surface micromachined SiO/sub 2/ and polysilicon beams held in organized arrays on the silicon wafer by break-away photoresist tethers.

107 citations

Journal ArticleDOI
TL;DR: In this paper, a microgripper based on silicon-polymer electrothermal actuators and piezoresistive force-sensing cantilever beams is presented.
Abstract: The novel design of a sensing microgripper based on silicon-polymer electrothermal actuators and piezoresistive force-sensing cantilever beams is presented. The actuator consists of a silicon comb structure with an aluminum heater on top and filled polymer in between the comb fingers. The sensor consists of a silicon cantilever with sensing piezoresistors on top. A microgripper jaw displacement up to 32 mum at a 4.5-V applied voltage is measured. The maximum average temperature change is 176 degC. The output voltage of the piezoresistive sensing cantilever is up to 49 mV at the maximum jaw displacement. The measured force sensitivity is up to 1.7 V/N with a corresponding displacement sensitivity of 1.5 kV/m. Minimum detectable displacement of 1 nm and minimum detectable force of 770 nN are estimated. This sensing microgripper can potentially be used in automatic manipulation systems in microassembly and microrobotics. [2008-0064].

106 citations

Journal ArticleDOI
TL;DR: In this article, a piezoelectric polymer-based sensorized micro gripper was used to provide force feedback to the operator through the haptic device and play a main role in preventing damage of assembly parts by adjusting the teaching command.
Abstract: This paper presents the design, fabrication, and calibration of a piezoelectric polymer-based sensorized microgripper. Electro discharge machining technology is employed to fabricate the superelastic alloy-based microgripper. It was experimentally tested to show the improvement of mechanical performance. For integration of force sensor in the microgripper, the sensor design based on the piezoelectric polymer polyvinylidene fluoride (PVDF) film and fabrication process are presented. The calibration and performance test of the force sensor-integrated microgripper are experimentally carried out. The force sensor-integrated microgripper is applied to fine alignment tasks of micro opto-electrical components. Experimental results show that it can successfully provide force feedback to the operator through the haptic device and play a main role in preventing damage of assembly parts by adjusting the teaching command.

103 citations