scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Comprehensive Survey on Microgrippers Design: Operational Strategy

01 Jul 2017-Journal of Mechanical Design (American Society of Mechanical Engineers Digital Collection)-Vol. 139, Iss: 7, pp 070801
About: This article is published in Journal of Mechanical Design.The article was published on 2017-07-01. It has received 66 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: A review of electrothermal micro-actuators and applications is presented in this paper, where the three main configurations of electro-thermal actuators are discussed: hot-and-cold-arm, chevron, and bimorph.
Abstract: This paper presents a review of electrothermal micro-actuators and applications. Electrothermal micro-actuators have been a significant research interest over the last two decades, and many different designs and applications have been investigated. The electrothermal actuation method offers several advantages when compared with the other types of actuation approaches based on electrostatic and piezoelectric principles. The electrothermal method offers flexibility in the choice of materials, low-cost fabrication, and large displacement capabilities. The three main configurations of electrothermal actuators are discussed: hot-and-cold-arm, chevron, and bimorph types as well as a few other unconventional actuation approaches. Within each type, trends are outlined from the basic concept and design modifications to applications which have been investigated in order to enhance the performance or to overcome the limitations of the previous designs. It provides a grasp of the actuation methodology, design, and fabrication, and the related performance and applications in cell manipulation, micro assembly, and mechanical testing of nanomaterials, Radio Frequency (RF) switches, and optical Micro-Electro-Mechanical Systems (MEMS).

66 citations

Journal ArticleDOI
TL;DR: This paper is concentrated on reviewing the state-of-the-art research on complaint micro-/nano-positioning stage design in recent years and involves the major processes and components for designing a compliant positioning stage, e.g., actuator selection, stroke amplifier design, connecting scheme of the multi-DOF stage and structure optimization.
Abstract: Micromanipulation is a hot topic due to its enabling role in various research fields. In order to perform a high precision operation at a small scale, compliant mechanisms have been proposed and applied for decades. In microscale manipulation, micro-/nano-positioning is the most fundamental operation because a precision positioning is the premise of subsequent operations. This paper is concentrated on reviewing the state-of-the-art research on complaint micro-/nano-positioning stage design in recent years. It involves the major processes and components for designing a compliant positioning stage, e.g., actuator selection, stroke amplifier design, connecting scheme of the multi-DOF stage and structure optimization. The review provides a reference to design a compliant micro-/nano-positioning stage for pertinent applications.

59 citations

Journal ArticleDOI
TL;DR: A CSFH has been analyzed with both theoretical and finite element methods, in order to obtain the relation between voltage and generated torque, and showed that CSFH performs better than linear flexure hinges in terms of larger rotations and less stress for given applied voltage.
Abstract: Progress in MEMS technology continuously stimulates new developments in the mechanical structure of micro systems, such as, for example, the concept of so-called CSFH (conjugate surfaces flexural hinge), which makes it possible, simultaneously, to minimize the internal stresses and to increase motion range and robustness. Such a hinge may be actuated by means of a rotary comb-drive, provided that a proper set of simulations and tests are capable to assess its feasibility. In this paper, a CSFH has been analyzed with both theoretical and finite element (FEM) methods, in order to obtain the relation between voltage and generated torque. The FEM model considers also the fringe effect on the comb drive finger. Electromechanical couple–field analysis is performed by means of both direct and load transfer methods. Experimental tests have been also performed on a CSFH embedded in a MEMS prototype, which has been fabricated starting from a SOI wafer and using D–RIE (deep reactive ion etching). Results showed that CSFH performs better than linear flexure hinges in terms of larger rotations and less stress for given applied voltage.

32 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the recent advances on performance indices, classification, structural composition, optimization and modeling method, and control of PEACM and provided a guideline on further development of the micro gripper.
Abstract: The piezoelectric-actuated compliant microgripper (PEACM) plays an essential role in the application fields such as biomedical engineering, microelectronics, and optical engineering. As compared with other categories of grippers, PEACM exhibits the advantages of high accuracy of displacement, large power to weight ratio, low energy consumption, and fast response speed. This paper reviews the recent advances on performance indices, classification, structural composition, optimization and modeling method, and control of PEACM. First, the gripper's performance indices and classifications are elaborated, which is beneficial to determine the design goal. Then, the compliant mechanisms adopted in the microgripper design are discussed, including the flexible hinge, displacement amplifier, and guiding mechanism. In addition, the optimization and modeling methods of the microgripper are presented. Popular types of position/force sensors and different displacement/force control strategies employed in the microgripper are surveyed. Moreover, the prospect on future development trend of the PEACM is discussed. The paper provides the reader with an overview of the recent advances on PEACM design and also a guideline on further development of the microgripper.

32 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a control-optimized piezoelectric microgripper with a flexible mechanism dedicated to micromanipulation, which is used for controlling the actuator tip.
Abstract: In this paper, modeling and robust control strategy for a new control-optimized piezoelectric microgripper are presented. The device to be controlled is a piezoelectric flexible mechanism dedicated to micromanipulation. It has been previously designed with an emphasis to control strategy, using a new topological optimization method, by considering innovative frequency-based criteria. A complete nonlinear model relating the voltage and the resulting deflection is established, taking into account hysteresis as a plurilinear model subjected to uncertainties. The approach used for controlling the actuator tip is based on a mixed high authority control (HAC)/low authority control (LAC) strategy for designing a wideband regulator. It consists of a positive position feedback damping controller approach combined with a low-frequency integral controller, which is shown to have robustness performances as good as a RST-based robust pole placement approach for the microgripper. The rejection of the vibrations, naturally induced by the flexible structure, and the control of the tip displacement have been successfully performed. Because we had taken into account frequency-based criteria from the first designing step of our device, we demonstrate that the tuning of the HAC/LAC can be easily performed and leads to low-regulator order.

65 citations

Journal ArticleDOI
TL;DR: A new approach to tissue and cell manipulation is presented, which employs a conceptually new conjugate surfaces flexure hinge (CSFH) silicon MEMS-based technology micro-gripper that solves most of the above-mentioned problems.
Abstract: Although tissue and cell manipulation nowadays is a common task in biomedical analysis, there are still many different ways to accomplish it, most of which are still not sufficiently general, inexpensive, accurate, efficient or effective. Several problems arise both for in vivo or in vitro analysis, such as the maximum overall size of the device and the gripper jaws (like in minimally-invasive open biopsy) or very limited manipulating capability, degrees of freedom or dexterity (like in tissues or cell-handling operations). This paper presents a new approach to tissue and cell manipulation, which employs a conceptually new conjugate surfaces flexure hinge (CSFH) silicon MEMS-based technology micro-gripper that solves most of the above-mentioned problems. The article describes all of the phases of the development, including topology conception, structural design, simulation, construction, actuation testing and in vitro observation. The latter phase deals with the assessment of the function capability, which consists of taking a series of in vitro images by optical microscopy. They offer a direct morphological comparison between the gripper and a variety of tissues.

62 citations

Journal ArticleDOI
TL;DR: In this article, a micromachined actuator was developed to produce precise and unlimited displacement by impact force between a silicon micro-mass and a stopper, driven by electrostatic force.
Abstract: This paper presents a novel micromachined actuator which is developed to produce precise and unlimited displacement. The actuator is driven by impact force between a silicon micro-mass and a stopper. The suspended silicon micro-mass is encapsulated between two glass plates and driven by electrostatic force. When the mass hits the stopper which is fixed on glass plates, impact force is generated to drive the whole actuator in a nano size step (/spl sim/10 nm). The overall dimension of the device is 3 mm /spl times/3 mm. The driving voltage is 100 V and average speed is 2.7 /spl mu/m/s. The total thickness is 600 /spl mu/m.

62 citations

Journal ArticleDOI
TL;DR: In this article, a state-of-the-art overview of recent development in the actuators (electrostatic, electrothermal, micro-pneumatic, electromagnetic, shape memory alloy and other actuators) and sensors (optical method, piezoresis-tive force sensor, capacitive force sensor and other developments).
Abstract: In recent years, microelectromechanical systems (MEMS) have been widely applied in diverse science and en- gineering domains. MEMS-based microgrippers provide advantages in terms of compact size and low cost, and hence play an important role in microassembly and micromanipulation fields for manipulating micromechanical elements, bio- logical cells, etc. During the past two decades, microactuators based on different actuation principles such as shape- memory alloys, electrostatic, electrothermal, piezoelectric, pneumatic and electromagnetic approaches have been devised to drive MEMS microgrippers. Moreover, the integrated position and force sensors can deliver real-time feedback signals to protect both the microgripper and grasped object from damaging. In addition, a number of patents have been devoted to this area. This paper presents a state-of-the-art overview of recent development in the actuators (electrostatic, electrother- mal, micro-pneumatic, electromagnetic, shape memory alloy and other actuators) and sensors (optical method, piezoresis- tive force sensor, capacitive force sensor and other developments). By providing detailed comparisons among them, some guidelines of selection have been underlined for different application scenarios such as biomedical and biological applica- tions, micro-manufacturing and so on.

60 citations

Proceedings ArticleDOI
TL;DR: In this paper, the authors describe how nonlinear force flexures can be used to increase the stable deflection distance of an electrostatically operated micromirror, and present a theoretical simulation of traditional and higher order flexures.
Abstract: This paper describes how nonlinear force flexures can be used to increase the stable deflection distance of an electrostatically operated micromirror. Traditional micromirrors have flexures that provide linear force as a function of deflection. Electrostatic attraction is a nonlinear force, so after a traditional micromirror has deflected one-third of the initial separation distance between the top and bottom electrode, the mirror's position becomes unstable, and the mirror quickly jumps down to the bottom electrode. This phenomenon is called 'snap-through,' and it has been well-documented. A nonlinear second order flexure has a restorative force that is proportional to the square of the deflection distance. A second order flexure does not exhibit snap-through until the micromirror is deflected one-half the initial separation between the top and bottom electrode. Higher order flexures are capable of traveling a larger distance before snap-through. This paper presents a theoretical simulation of traditional and higher order flexures. Specific nonlinear flexure designs have been constructed and demonstrated.

59 citations