scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Comprehensive Survey on Microgrippers Design: Operational Strategy

01 Jul 2017-Journal of Mechanical Design (American Society of Mechanical Engineers Digital Collection)-Vol. 139, Iss: 7, pp 070801
About: This article is published in Journal of Mechanical Design.The article was published on 2017-07-01. It has received 66 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: A review of electrothermal micro-actuators and applications is presented in this paper, where the three main configurations of electro-thermal actuators are discussed: hot-and-cold-arm, chevron, and bimorph.
Abstract: This paper presents a review of electrothermal micro-actuators and applications. Electrothermal micro-actuators have been a significant research interest over the last two decades, and many different designs and applications have been investigated. The electrothermal actuation method offers several advantages when compared with the other types of actuation approaches based on electrostatic and piezoelectric principles. The electrothermal method offers flexibility in the choice of materials, low-cost fabrication, and large displacement capabilities. The three main configurations of electrothermal actuators are discussed: hot-and-cold-arm, chevron, and bimorph types as well as a few other unconventional actuation approaches. Within each type, trends are outlined from the basic concept and design modifications to applications which have been investigated in order to enhance the performance or to overcome the limitations of the previous designs. It provides a grasp of the actuation methodology, design, and fabrication, and the related performance and applications in cell manipulation, micro assembly, and mechanical testing of nanomaterials, Radio Frequency (RF) switches, and optical Micro-Electro-Mechanical Systems (MEMS).

66 citations

Journal ArticleDOI
TL;DR: This paper is concentrated on reviewing the state-of-the-art research on complaint micro-/nano-positioning stage design in recent years and involves the major processes and components for designing a compliant positioning stage, e.g., actuator selection, stroke amplifier design, connecting scheme of the multi-DOF stage and structure optimization.
Abstract: Micromanipulation is a hot topic due to its enabling role in various research fields. In order to perform a high precision operation at a small scale, compliant mechanisms have been proposed and applied for decades. In microscale manipulation, micro-/nano-positioning is the most fundamental operation because a precision positioning is the premise of subsequent operations. This paper is concentrated on reviewing the state-of-the-art research on complaint micro-/nano-positioning stage design in recent years. It involves the major processes and components for designing a compliant positioning stage, e.g., actuator selection, stroke amplifier design, connecting scheme of the multi-DOF stage and structure optimization. The review provides a reference to design a compliant micro-/nano-positioning stage for pertinent applications.

59 citations

Journal ArticleDOI
TL;DR: A CSFH has been analyzed with both theoretical and finite element methods, in order to obtain the relation between voltage and generated torque, and showed that CSFH performs better than linear flexure hinges in terms of larger rotations and less stress for given applied voltage.
Abstract: Progress in MEMS technology continuously stimulates new developments in the mechanical structure of micro systems, such as, for example, the concept of so-called CSFH (conjugate surfaces flexural hinge), which makes it possible, simultaneously, to minimize the internal stresses and to increase motion range and robustness. Such a hinge may be actuated by means of a rotary comb-drive, provided that a proper set of simulations and tests are capable to assess its feasibility. In this paper, a CSFH has been analyzed with both theoretical and finite element (FEM) methods, in order to obtain the relation between voltage and generated torque. The FEM model considers also the fringe effect on the comb drive finger. Electromechanical couple–field analysis is performed by means of both direct and load transfer methods. Experimental tests have been also performed on a CSFH embedded in a MEMS prototype, which has been fabricated starting from a SOI wafer and using D–RIE (deep reactive ion etching). Results showed that CSFH performs better than linear flexure hinges in terms of larger rotations and less stress for given applied voltage.

32 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the recent advances on performance indices, classification, structural composition, optimization and modeling method, and control of PEACM and provided a guideline on further development of the micro gripper.
Abstract: The piezoelectric-actuated compliant microgripper (PEACM) plays an essential role in the application fields such as biomedical engineering, microelectronics, and optical engineering. As compared with other categories of grippers, PEACM exhibits the advantages of high accuracy of displacement, large power to weight ratio, low energy consumption, and fast response speed. This paper reviews the recent advances on performance indices, classification, structural composition, optimization and modeling method, and control of PEACM. First, the gripper's performance indices and classifications are elaborated, which is beneficial to determine the design goal. Then, the compliant mechanisms adopted in the microgripper design are discussed, including the flexible hinge, displacement amplifier, and guiding mechanism. In addition, the optimization and modeling methods of the microgripper are presented. Popular types of position/force sensors and different displacement/force control strategies employed in the microgripper are surveyed. Moreover, the prospect on future development trend of the PEACM is discussed. The paper provides the reader with an overview of the recent advances on PEACM design and also a guideline on further development of the microgripper.

32 citations

References
More filters
Proceedings ArticleDOI
24 Apr 2000
TL;DR: The optical beam deflection sensor is based on modified atomic force microscopy techniques and is able to resolve forces below a nano-Newton, and provides insight into the mechanics of micromanipulation and micrograsping strategies are developed.
Abstract: This paper presents our work in developing a force controlled microgripper and micrograsping strategies using optical beam deflection techniques. The optical beam deflection sensor is based on modified atomic force microscopy techniques and is able to resolve forces below a nano-Newton. A variety of gripper fingers made from materials with different conductivity and surface roughness is analyzed theoretically and experimentally using the force sensor. These results provide insight into the mechanics of micromanipulation, and the results are used to develop micrograsping strategies. A design of a microfabricated force controlled microgripper is presented along with initial experimental results in applying various gripping forces to microparts. The results demonstrate the important role gripping force plays in the grasping and releasing of microparts.

55 citations

Journal ArticleDOI
TL;DR: In this article, a detailed modeling, simulations and testing of a novel electrostatically actuated micro gripper integrated with capacitive contact sensor is presented, which is actuated with lateral comb drive system and transverse comb system is used to sense contact between micro-object and microgripper jaws.
Abstract: In this paper a detailed modeling, simulations and testing of a novel electrostatically actuated microgripper integrated with capacitive contact sensor is presented. Microgripper is actuated with lateral comb drive system and transverse comb system is used to sense contact between micro-object and microgripper jaws. The design is optimized in standard SOI-MUMPs micromachining process using L-Edit of MEMS-Pro. Finite element analysis of microgripper is performed in COVENTOR-WARE which shows total displacement of 15.5 μm at the tip of jaws when voltage of 50 Vdc is applied at the actuator. Finite element analysis of sensor part is performed and results are compared with analytical model. Modal analysis is performed to investigate mode shapes and natural frequencies of the microgripper. Microgripper is tested experimentally and total displacement of 17 μm is achieved at the tip of microgripper. The slight difference between finite element analysis and experimental results is due to small variations in the material properties, deposited during the fabrication process. The change in capacitance of capacitive contact sensor is linearly calibrated with the change in the displacement. The sensitivity of contact sensor is 90 fF/μm. The total size of microgripper is 5.03 mm × 6.5 mm.

55 citations

Journal ArticleDOI
TL;DR: In this article, the authors review some design considerations for the scaling down in size of instruments and machines with a primary aim to identify technologies that may provide more optimal performance solutions than those, often established, technologies used at macroscopic, or conventional, scales.
Abstract: This article reviews some design considerations for the scaling down in size of instruments and machines with a primary aim to identify technologies that may provide more optimal performance solutions than those, often established, technologies used at macroscopic, or conventional, scales. Dimensional metrology within emerging applications will be considered for meso- through micro-down to nanometer level systems with particular emphasis on systems for which precision is directly related to function. In this paper, attention is limited to some of the more fundamental issues associated with scaling. For example, actuator work or power densities or the effect of noise on the sensor signals can be readily evaluated and provide some guidance in the selection for any given size of device. However, with reductions in scale these parameters and/or phenomena that limit performance may change. Within this review, the authors have tried to assess these complex inter-relationships between performance and scale, again from a fundamental perspective. In practice, it is likely that the nuances of implementation and integration of sensor, actuator and/or mechanism designs will determine functionality and commercial viability of any particular system development.

55 citations

Journal ArticleDOI
TL;DR: An overview of the fabrication and manufacturing technique of thin-film and bulk micromachined SMAs and the microactuator devices emphasized for biomedical applications such as microgrippers and micropumps are highlighted.
Abstract: Shape memory alloys (SMAs) are a class of smart materials characterized by shape memory effect and pseudo-elastic behavior. They have the capability to retain their original form when subjected to certain stimuli, such as heat or a magnetic field. These unique properties have attracted many researchers to seek their application in various fields including transportation, aerospace, and biomedical. The ease process adaption from semiconductor manufacturing technology provides many opportunities for designing micro-scale devices using this material. This paper gives an overview of the fabrication and manufacturing technique of thin-film and bulk micromachined SMAs. Key features such as material properties, transformation temperature, material composition, and actuation method are also presented. The application and micromechanism for both thin-film and bulk SMA are described. Finally, the microactuator devices emphasized for biomedical applications such as microgrippers and micropumps are highlighted. The presented review will provide information for researchers who are actively working on the development of SMA-based microscale biomedical devices.

55 citations

Journal ArticleDOI
TL;DR: In this article, a thermally actuated micro gripper was designed and fabricated from single crystal bulk silicon with a gripping width of 5mm for 5-6V driving voltage at a current of 50-60mA.

54 citations