scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Comprehensive Survey on Microgrippers Design: Operational Strategy

01 Jul 2017-Journal of Mechanical Design (American Society of Mechanical Engineers Digital Collection)-Vol. 139, Iss: 7, pp 070801
About: This article is published in Journal of Mechanical Design.The article was published on 2017-07-01. It has received 66 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: A review of electrothermal micro-actuators and applications is presented in this paper, where the three main configurations of electro-thermal actuators are discussed: hot-and-cold-arm, chevron, and bimorph.
Abstract: This paper presents a review of electrothermal micro-actuators and applications. Electrothermal micro-actuators have been a significant research interest over the last two decades, and many different designs and applications have been investigated. The electrothermal actuation method offers several advantages when compared with the other types of actuation approaches based on electrostatic and piezoelectric principles. The electrothermal method offers flexibility in the choice of materials, low-cost fabrication, and large displacement capabilities. The three main configurations of electrothermal actuators are discussed: hot-and-cold-arm, chevron, and bimorph types as well as a few other unconventional actuation approaches. Within each type, trends are outlined from the basic concept and design modifications to applications which have been investigated in order to enhance the performance or to overcome the limitations of the previous designs. It provides a grasp of the actuation methodology, design, and fabrication, and the related performance and applications in cell manipulation, micro assembly, and mechanical testing of nanomaterials, Radio Frequency (RF) switches, and optical Micro-Electro-Mechanical Systems (MEMS).

66 citations

Journal ArticleDOI
TL;DR: This paper is concentrated on reviewing the state-of-the-art research on complaint micro-/nano-positioning stage design in recent years and involves the major processes and components for designing a compliant positioning stage, e.g., actuator selection, stroke amplifier design, connecting scheme of the multi-DOF stage and structure optimization.
Abstract: Micromanipulation is a hot topic due to its enabling role in various research fields. In order to perform a high precision operation at a small scale, compliant mechanisms have been proposed and applied for decades. In microscale manipulation, micro-/nano-positioning is the most fundamental operation because a precision positioning is the premise of subsequent operations. This paper is concentrated on reviewing the state-of-the-art research on complaint micro-/nano-positioning stage design in recent years. It involves the major processes and components for designing a compliant positioning stage, e.g., actuator selection, stroke amplifier design, connecting scheme of the multi-DOF stage and structure optimization. The review provides a reference to design a compliant micro-/nano-positioning stage for pertinent applications.

59 citations

Journal ArticleDOI
TL;DR: A CSFH has been analyzed with both theoretical and finite element methods, in order to obtain the relation between voltage and generated torque, and showed that CSFH performs better than linear flexure hinges in terms of larger rotations and less stress for given applied voltage.
Abstract: Progress in MEMS technology continuously stimulates new developments in the mechanical structure of micro systems, such as, for example, the concept of so-called CSFH (conjugate surfaces flexural hinge), which makes it possible, simultaneously, to minimize the internal stresses and to increase motion range and robustness. Such a hinge may be actuated by means of a rotary comb-drive, provided that a proper set of simulations and tests are capable to assess its feasibility. In this paper, a CSFH has been analyzed with both theoretical and finite element (FEM) methods, in order to obtain the relation between voltage and generated torque. The FEM model considers also the fringe effect on the comb drive finger. Electromechanical couple–field analysis is performed by means of both direct and load transfer methods. Experimental tests have been also performed on a CSFH embedded in a MEMS prototype, which has been fabricated starting from a SOI wafer and using D–RIE (deep reactive ion etching). Results showed that CSFH performs better than linear flexure hinges in terms of larger rotations and less stress for given applied voltage.

32 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the recent advances on performance indices, classification, structural composition, optimization and modeling method, and control of PEACM and provided a guideline on further development of the micro gripper.
Abstract: The piezoelectric-actuated compliant microgripper (PEACM) plays an essential role in the application fields such as biomedical engineering, microelectronics, and optical engineering. As compared with other categories of grippers, PEACM exhibits the advantages of high accuracy of displacement, large power to weight ratio, low energy consumption, and fast response speed. This paper reviews the recent advances on performance indices, classification, structural composition, optimization and modeling method, and control of PEACM. First, the gripper's performance indices and classifications are elaborated, which is beneficial to determine the design goal. Then, the compliant mechanisms adopted in the microgripper design are discussed, including the flexible hinge, displacement amplifier, and guiding mechanism. In addition, the optimization and modeling methods of the microgripper are presented. Popular types of position/force sensors and different displacement/force control strategies employed in the microgripper are surveyed. Moreover, the prospect on future development trend of the PEACM is discussed. The paper provides the reader with an overview of the recent advances on PEACM design and also a guideline on further development of the microgripper.

32 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a robust proportional integral derivative (PID) controller coupled with a feed forward compensator is designed for set-point regulation manoeuvres of an electrostatic micromechanical system.
Abstract: A robust proportional integral derivative (PID) controller coupled to a feedforward compensator is designed for set-point regulation manoeuvres of an electrostatic micromechanical system. The system is linearised at multiple operating points, and the feedforward compensator provides the nominal voltage. Perturbations around these points are handled from the PID controller, whose gains are tuned via the utilisation of a linear matrix inequality (LMI) approach, which guarantees robustness against the switching nature of the linearised system dynamics. The maximum microspring-stiffness parametric uncertainty that can be tolerated within this scheme, is computed through the use of the small gain theorem. Simulation studies are presented that proves the efficacy of the suggested scheme.

38 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented a topology optimized design procedure and fabrication of electrothermal polysilicon microgrippers for nanomanipulation purposes, which was compared with a conventional three-beam microactuator design through finite element analysis.

37 citations

Journal ArticleDOI
TL;DR: In this paper, a force-controlled microelectromechanical system rotary micro gripper with integrated electrothermal sensors is presented, where the controller counteracts the input disturbance (contact force) and an integrated EH sensor provides a feedback signal to close the control loop.
Abstract: This paper presents a force-controlled microelectromechanical systems rotary microgripper with integrated electrothermal sensors. The proposed microgripper achieves a large displacement ( $85~\mu $ m) at low driving voltages (≤80 V). Closed-loop force control is implemented to ensure the safety of the operation where the controller gain is experimentally tuned so that the desired response is achieved. One of the main contributions of this work is the implementation of a null-displacement feedback control force-sensing technique, where the controller counteracts the input disturbance (contact force) and an integrated electrothermal displacement sensor provides a feedback signal to close the control loop. In this manner, the contact force is measured without moving the structure. Finally, the effectiveness of the controller and the performance of the proposed microgripper are verified by a set of experiments. The results demonstrate the satisfactory performance of the proposed force-controlled microgripper in a practical application. [2014-0374]

37 citations

Journal ArticleDOI
TL;DR: In this article, a semi-automatic micro gripper with two 1DOF fingers fabricated by an amorphous, soft magnetic material and actuated electromagnetically is presented.
Abstract: This paper reports the development of a semi-automatic microgripping system that consists of a microgripper and an x, y, z positioning system. The microgripper has two 1DOF fingers fabricated by an amorphous, soft magnetic material and is actuated electromagnetically. The microgripper is embedded in the 3DOF positioning system with the help of a stainless steel holder under an angle, which is manually adjusted, in respect to the working field. The position of the microgripper is observed optically and by three digital indicators 1 from Mitutoyo, which offer easy reading and continuous position tracking. All axes are actuated by step motors which allow precise positioning of the microparticles under manipulation. The microgripping system was tested in pick and place cases, under an optical microscope in atmospheric conditions. Optical fibres (125 μm in diameter) and bonding wires (50 μm in diameter) were handled. The temperature on the actuator, on the microgripper fingers and on the microgripper tips during manipulation was measured using K type (Ni/CrNi) thermocouples. The gripping force was evaluated as well.

37 citations

Book ChapterDOI
01 Sep 1993-Robotica
TL;DR: A new approach of hybrid force/position control of a manipulator in touch with a rigid environment, based on the concept of external control is presented, and all the advantages are deriving from its hierarchical structure.
Abstract: A new approach of hybrid force/position control of a manipulator in touch with a rigid environment, based on the concept of external control is presented in this paper. The robotic manipulator is always position controlled and the trajectory is modified by the force controller output. All the advantages of this method are deriving from its hierarchical structure.

36 citations