scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A computational framework for incompressible electromechanics based on convex multi-variable strain energies for geometrically exact shell theory

15 Apr 2017-Computer Methods in Applied Mechanics and Engineering (North-Holland)-Vol. 317, pp 792-816
TL;DR: In this paper, a new computational framework for the analysis of incompressible Electro Active Polymer (EAP) shells subjected to large strains and large electric fields is presented, based on a rotationless description of the kinematics of the shell, enhanced with extra degrees of freedom corresponding to the thickness stretch and the hydrostatic pressure.
Abstract: In this paper, a new computational framework for the analysis of incompressible Electro Active Polymer (EAP) shells subjected to large strains and large electric fields is presented. Two novelties are incorporated in this work. First, the variational and constitutive frameworks developed by the authors in recent publications (Gil and Ortigosa, 2016; Ortigosa and Gil, 2016; Ortigosa et al., 2016) in the context of three-dimensional electromechanics are particularised/degenerated to the case of geometrically exact shell theory. This formulation is computationally very convenient as EAPs are typically used as thin shell-like components in a vast range of applications. The proposed formulation follows a rotationless description of the kinematics of the shell, enhanced with extra degrees of freedom corresponding to the thickness stretch and the hydrostatic pressure, critical for the consideration of incompressibility. Different approaches are investigated for the interpolation of these extra fields and that of the electric potential across the thickness of the shell. Crucially, this allows for the simulation of multilayer and composite materials, which can display a discontinuous strain distribution across their thickness. As a second novelty, a continuum degenerate approach allows for the consideration of complex three-dimensional electromechanical constitutive models, as opposed to those defined in terms of the main strain measures of the shell. More specifically, convex multi-variable (three-dimensional) constitutive models, complying with the ellipticity condition and hence, satisfying material stability for the entire range of deformations and electric fields, are used for the first time in the context of shell theory.

Summary (3 min read)

1. Introduction

  • Electro Active Polymers (EAPs) belong to a special class of smart materials with very attractive actuator and energy harvesting capabilities [5].
  • This rotationless approach, which complies with the principle of material frame indifference [21], avoids a well-known drawback associated with rotation-based formulations.
  • More specifically, convex multi-variable electromechanical constitutive models, satisfying the ellipticity condition and hence, material stability [27–29] for the entire range of deformations and electric fields, are used for the first time in the context of shell theory.
  • Section 3 presents the kinematical description of the proposed shell formulation.
  • Additionally, the 3 concept of multi-variable convexity is extended to the context of nonlinear shell theory.

3.1. Shells kinematics

  • This is the case for the majority of applications of EAPs, where they feature as thin shell-like components.
  • Notice that the spatial vector v does not have to be necessarily perpendicular to the plane Γ. Moreover, γ(ηα, s) in above equation (11) represents the thickness stretch [17], which accounts for possible deformations across the thickness of the shell.
  • Notice that this extra field γ might depend not only on the convective coordinates ηα, but also 7 upon s.

3.4. Tangent operators in incompressible electro-elasticity. Continuum degenerate shell formulation

  • As shown in Section 3.2, the kinematics of the shell leads to further geometrical non-linearities with respect to the continuum formulation.
  • As a result, these extra non-linearities will also be reflected in the tangent operators of the internal and Helmholtz’s energy functionals, e (20) and Φ (27), respectively4.

3.4.1. Tangent operator of the internal energy e

  • The tangent operator of both the isochoric and volumetric components of the internal energy, ê and U , respectively, can be defined for the continuum 4Refer to [4] for a comparison with the tangent operator of both the internal and Helmholtz’s energy functionals emerging in the continuum formulation.
  • Notice that these tensors introduce an additional geometrical nonlinearity, represented by the second terms on the right hand side of both tangent operators in equation (28), with respect to the tangent operators emerging in the continuum formulation, presented in Reference [4].

4. Variational formulation of nearly and incompressible dielectric elastomer shells

  • The objective of this Section is to present the variational framework for the proposed shell formulation.
  • An iterative6 Newton-Raphson process is usually preferred to converge 5The expression of the external virtual work DW ext[δu0, δv, δγ] is well known and, hence, omitted.
  • 6The letter k will indicate iteration number.
  • These recursive relationships (carried out at every Gauss point of the domain) between the Helmholtz’s energy Φ̂ and the internal energy.

5.2. Interpolation across the thickness of the shell

  • The interpolation of the uniparametric functions J a(s) is carried out via element-wise (e) continuous (or discontinuous) Lagrange polynomial interpolants of degree pJ .
  • When considering continuous (or discontinuous) interpolants, this will be denoted as Continuum-Based-Continuous (CBC) (or Continuum-Based-Discontinuous (CBD)) approach, both described as J a(s) = ns∑ e=1 pJ+1∑ b=1 J abe N bJ e(s), (47) where J abe represents a degree of freedom, N bJ e(s) its associated shape function and ns the number of elements in the discretisation of s.
  • The CBC approach has been used for the fields {ϕ, γ, p} and the CBD approach has been specifically used for the field γ when discontinuous strains are expected across the thickness.
  • In addition, CBC and CBD approaches have been compared against a truncated Taylor series expansion, as that in [43], denoted as Taylor-Expansion (TE) approach.

6. Numerical examples

  • The objective of this section is to demonstrate the applicability of the proposed shell formulation via a series of numerical examples, in which convex multi-variable electromechanical constitutive models, defined in the context of continuum formulations [1–4], will be considered.
  • In all the examples, a reconstruction of the continuum associated with the shell has been carried out at a post-processing level.
  • This reconstruction, based on the mapping x in equation (11), enables to show results not only in the mid surface of the shell but also across its thickness.

6.1. Bending actuators

  • This example considers the actuation device with geometry depicted in Figure 3. 6.1.1. Results for bending actuator configuration 1 Objective 2: The second objective is to test the performance of the formulation in scenarios characterised by the presence of discontinuities of the electric field distribution across the thickness of the shell.
  • Interestingly, Figures 7g−l show the purely mechanical and electrical contributions of the Cauchy stress tensor.
  • Regarding objective 2 and objective 3, the same conclusion as those obtained in the previous example are obtained and hence, omitted for brevity.

6.2. Helicoidal actuator

  • Regarding the boundary conditions, the degrees of freedom associated with the displacements of the mid surface of the shell and the director field d at X3 = 0m are completely constrained.
  • An electric charge per unit undeformed area of +ω0 and −ω0 is applied in both electrodes .
  • The value of the material parameters chosen for this particular example are shown in Table 2.
  • The first objective of this example is to demonstrate the applicability of the proposed formulation to scenarios where the reference configuration of the shell is curved, as that described by the cylindrically parametrised geometry (in the reference configuration) in equation (55), also known as Objective 1.
  • Figure 13 shows the contour plot of various stress and electric-like fields for a fixed value of the applied electric charge ω0.

6.3. Hyperboloid piezoelectric polymer

  • The hyperboloid with geometry described in Figure 15, presented in the context of pure elasticity in Reference [12], has been considered.
  • The material is transversely anisotropic, with the preferred axis of anisotropy N tangent to the surface of the hyperboloid as depicted in Figure 15.
  • The objective of this following example is to demonstrate the applicability of the proposed shell formulation to piezoelectric materials, where deformations can create a distribution of electric field in the material.
  • 8The area expansion has been computed as 1/γ, with γ the thickness stretch.
  • 34 35 Figures 16 displays contour plot of the (mechanically induced) electric field E3 for different values of the applied surface force q. Finally, Figure 17 shows the contour plot distribution of H22, σ33, p, ϕ, E1 and D03 for a given value of the applied surface force q.

7. Concluding remarks

  • This paper has provided a computational approach to formulate incompressible EAPs shells undergoing large strains and large electric field scenarios.
  • The proposed formulation, based upon a rotationless kinematical description of the shell, stems from the variational and constitutive framework proposed by the authors in previous publications [1–4], degenerated in this paper to the case of a nonlinear shell theory.
  • Two approaches have been considered for the interpolation of the electric potential across the thickness of the shell.
  • Specifically, the continuumbased-continuous (CBC) approach described in Section 5.2 and the Taylor expansion approach (TE) in [43].
  • A comparison of the results rendered by both approaches has been presented.

Did you find this useful? Give us your feedback

Figures (14)
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a geometrically nonlinear theory for circular cylindrical shells made of incompressible hyperelastic materials is developed, which is higher-order in both shear and thickness deformations.
Abstract: In the present study, a geometrically nonlinear theory for circular cylindrical shells made of incompressible hyperelastic materials is developed. The 9-parameter theory is higher-order in both shear and thickness deformations. In particular, the four parameters describing the thickness deformation are obtained directly from the incompressibility condition. The hyperelastic law selected is a state-of-the-art material model in biomechanics of soft tissues and takes into account the dispersion of collagen fiber directions. Special cases, obtained from this hyperelastic law setting to zero one or some material coefficients, are the Neo-Hookean material and a soft biological material with two families of collagen fibers perfectly aligned. The proposed model is validated through comparison with the exact solution for axisymmetric cylindrical deformation of a thick cylinder. In particular, the shell theory developed herein is capable to describe, with extreme accuracy, even the post-stability problem of a pre-stretched and inflated Neo-Hookean cylinder until the thickness vanishes. Comparison to the solution of higher-order shear deformation theory, which neglects the thickness deformation and recovers the normal strain from the incompressibility condition, is also presented.

52 citations

Journal ArticleDOI
TL;DR: In this paper, a high-order finite element implementation of the convex multi-variable electro-elasticity for large deformations large electric fields analyses and its particularisation to the case of small strains through a staggered scheme is presented.
Abstract: This paper presents a high order finite element implementation of the convex multi-variable electro-elasticity for large deformations large electric fields analyses and its particularisation to the case of small strains through a staggered scheme With an emphasis on accurate geometrical representation, a high performance curvilinear finite element framework based on an a posteriori mesh deformation technique is developed to accurately discretise the underlying displacement-potential variational formulation The performance of the method under near incompressibility and bending actuation scenarios is analysed with extremely thin and highly stretched components and compared to the performance of mixed variational principles recently reported by Gil and Ortigosa (2016) and Ortigosa and Gil (2016) Although convex multi-variable constitutive models are elliptic hence, materially stable for the entire range of deformations and electric fields, other forms of physical instabilities are not precluded in these models In particular, physical instabilities present in dielectric elastomers such as pull-in instability, snap-through and the formation, propagation and nucleation of wrinkles and folds are numerically studied with a detailed precision in this paper, verifying experimental findings For the case of small strains, the essence of the approach taken lies in guaranteeing the objectivity of the resulting work conjugates, by starting from the underlying convex multi-variable internal energy, whence avoiding the need for further symmetrisation of the resulting Maxwell and Minkowski-type stresses at small strain regime In this context, the nonlinearity with respect to electrostatic counterparts such as electric displacements is still retained, hence resulting in a formulation similar but more competitive with the existing linearised electro-elasticity approaches Virtual prototyping of many application-oriented dielectric elastomers are carried out with an eye on pattern forming in soft robotics and other potential medical applications

28 citations


Cites background from "A computational framework for incom..."

  • ...A convex multi-variable strain energy description based on the works of Gil and Ortigosa [1, 2, 3] is chosen for modelling EAPs under actuation and energy harvesting scenarios....

    [...]

  • ...For the case of small strains, the staggered scheme is shown to capture the electrostrictive behaviour of EAPs fairly well with a threshold point in applied voltage beyond which the fully coupled nonlinear solver becomes computational more favourable....

    [...]

  • ...On the other end of the spectrum lies the class of mathematically more sophisticated formulations that exploit the large deformation characteristics of EAP [5, 14, 15, 1, 2, 16, 17, 18]....

    [...]

  • ...In particular, the electronic subgroup of EAP such as Dielectric Elastomers (DE) and electrostrictive relaxor ferroelectric polymers or Piezoelectric Polymers (PP) have become the subject of intensive mathematical and numerical analyses....

    [...]

  • ...In recent years, exploiting actuation and harvesting through the heterogenous class of ElectroActive-Polymers (EAP) has received considerable research focus....

    [...]

Journal ArticleDOI
TL;DR: In this article, the behavior of heterogeneous magnetorheological composites subjected to large deformations and external magnetic fields is studied and different types of boundary conditions based on the primary variables of the magneto-elastic enthalpy and internal energy functionals are applied to solve the problem at the micro-scale.
Abstract: In the present work, the behavior of heterogeneous magnetorheological composites subjected to large deformations and external magnetic fields is studied. Computational homogenization is used to derive the macroscopic material response from the averaged response of the underlying microstructure. The microstructure consists of two materials and is far smaller than the characteristic length of the macroscopic problem. Different types of boundary conditions based on the primary variables of the magneto-elastic enthalpy and internal energy functionals are applied to solve the problem at the micro-scale. The overall responses of the RVEs with different sizes and particle distributions are studied under different loads and magnetic fields. The results indicate that the application of each set of boundary conditions presents different macroscopic responses. However, increasing the size of the RVE, solutions from different boundary conditions get closer to each other and converge to the response obtained from periodic boundary conditions.

25 citations

Journal ArticleDOI
TL;DR: Domain-aware expression templates combined with SIMD instructions are shown to provide a significant speed-up over the classical low-level style programming techniques.
Abstract: The paper presents aspects of implementation of a new high performance tensor contraction framework for the numerical analysis of coupled and multi-physics problems on streaming architectures. In addition to explicit SIMD instructions and smart expression templates, the framework introduces domain specific constructs for the tensor cross product and its associated algebra recently rediscovered by Bonet et al. (2015, 2016) in the context of solid mechanics. The two key ingredients of the presented expression template engine are as follows. First, the capability to mathematically transform complex chains of operations to simpler equivalent expressions, while potentially avoiding routes with higher levels of computational complexity and, second, to perform a compile time depth-first or breadth-first search to find the optimal contraction indices of a large tensor network in order to minimise the number of floating point operations. For optimisations of tensor contraction such as loop transformation, loop fusion and data locality optimisations, the framework relies heavily on compile time technologies rather than source-to-source translation or JIT techniques. Every aspect of the framework is examined through relevant performance benchmarks, including the impact of data parallelism on the performance of isomorphic and nonisomorphic tensor products, the FLOP and memory I/O optimality in the evaluation of tensor networks, the compilation cost and memory footprint of the framework and the performance of tensor cross product kernels. The framework is then applied to finite element analysis of coupled electro-mechanical problems to assess the speed-ups achieved in kernel-based numerical integration of complex electroelastic energy functionals. In this context, domain-aware expression templates combined with SIMD instructions are shown to provide a significant speed-up over the classical low-level style programming techniques.

23 citations


Cites background from "A computational framework for incom..."

  • ...Recently, Gil and Ortigosa [47, 48, 58, 59] have introduced the concept of multi-variable convexity, which satisfies the well-posedness of the governing equations described in subsection 2.2, and postulated as e(F ,D0) = W (F ,H , J,D0,d); d = FD0, (4) where W represents a convex multi-variable functional in terms of the extended set of arguments V = {F ,H , J,D0,d}....

    [...]

  • ...Recently, Gil and Ortigosa [47, 48, 58, 59] have introduced the concept of multi-variable convexity, which satisfies the well-posedness of the governing equations described in subsection 2....

    [...]

Journal ArticleDOI
TL;DR: A new one-step second order accurate energy–momentum (EM) preserving time integrator for reversible electro-elastodynamics is shown to be extremely useful for the long-term simulation of electroactive polymers (EAPs) undergoing massive strains and/or electric fields.
Abstract: This paper introduces a new one-step second order accurate energy–momentum (EM) preserving time integrator for reversible electro-elastodynamics. The new scheme is shown to be extremely useful for the long-term simulation of electroactive polymers (EAPs) undergoing massive strains and/or electric fields. The paper presents the following main novelties. (1) The formulation of a new energy–momentumtime integrator scheme in the context of nonlinear electro-elastodynamics. (2) The consideration of well-posed ab initio convex multi-variable constitutive models. (3) Based on the use of alternative mixed variational principles, the paper introduces two different EM time integration strategies (one based on the Helmholtz’s and the other based on the internal energy). (4) The new time integrator relies on the definition of four discrete derivatives of the internal/Helmholtz energies representing the algorithmic counterparts of the work conjugates of the right Cauchy–Green deformation tensor, its co-factor, its determinant and the Lagrangian electric displacement field. (6) Proof of thermodynamic consistency and of second order accuracy with respect to time of the resulting algorithm is included. Finally, a series of numerical examples are included in order to demonstrate the robustness and conservation properties of the proposed scheme, specifically in the case of long-term simulations.

20 citations

References
More filters
Journal ArticleDOI
TL;DR: This paper builds on recent work developed by the authors for the numerical analysis of large strain solid dynamics, by introducing an upwind cell centred hexahedral finite volume framework implemented within the open source code OpenFOAM.
Abstract: This paper builds on recent work developed by the authors for the numerical analysis of large strain solid dynamics, by introducing an upwind cell centred hexahedral Finite Volume framework implemented within the open source code OpenFOAM [http://wwwopenfoamcom/http://wwwopenfoamcom/] In Lee, Gil and Bonet [1], a first order hyperbolic system of conservation laws was introduced in terms of the linear momentum and the deformation gradient tensor of the system, leading to excellent behaviour in two dimensional bending dominated nearly incompressible scenarios The main aim of this paper is the extension of this algorithm into three dimensions, its tailor-made implementation into OpenFOAM and the enhancement of the formulation with three key novelties First, the introduction of two different strategies in order to ensure the satisfaction of the underlying involutions of the system, that is, that the deformation gradient tensor must be curl-free throughout the deformation process Second, the use of a discrete angular momentum projection algorithm and a monolithic Total Variation Diminishing Runge-Kutta time integrator combined in order to guarantee the conservation of angular momentum Third, and for comparison purposes, an adapted Total Lagrangian version of the Hyperelastic-GLACE nodal scheme of Kluth and Despr´es [2] is presented A series of challenging numerical examples are examined in order to assess the robustness and accuracy of the proposed algorithm, benchmarking it against an ample spectrum of alternative numerical strategies developed by the authors in recent publications

39 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigate the possible development of instabilities in a certain class of dielectric-elastomer composites (DECs) subjected to all-around dead electromechanical loading.
Abstract: In this work we investigate the possible development of instabilities in a certain class of dielectric-elastomer composites (DECs) subjected to all-around dead electromechanical loading. The DECs consist of a dielectric elastomer matrix phase constrained to plane strain deformations by means of aligned, long, rigid dielectric fibers of elliptical cross-section that are also aligned but randomly distributed in the transverse plane. Two types of instabilities are considered: loss of positive definiteness (LPD), and loss of strong ellipticity (LE). LPD simply corresponds to the loss of local convexity of the homogenized electroelastic stored-energy function for the DECs and can be of two types depending on the resulting instability modes. When the modes are aligned with the ‘principal’ solution, the instability corresponds to a maximum in the nominal electric field, possibly followed by snapping behavior. Alternatively, when the modes are orthogonal to the principal solution, the instability corresponds to a...

33 citations

Journal ArticleDOI
TL;DR: In this paper, a four-node quadrilateral element based on Allman shape functions undergoing finite (unrestricted) drilling rotations is considered, and two variational formulations including the rotation constraint (RC) equation are considered; one based on the Green strain, and the other on the relaxed non-symmetric right stretch strain.
Abstract: The paper concerns a four-node quadrilateral element based on Allman shape functions undergoing finite (unrestricted) drilling rotations, and aims at improving its accuracy and facilitating its implementation. Firstly, the classical Allman shape functions are valid only for small in-plane rotations, and must be used with a co-rotational frame, which embeds finite rotations. We derive a new form of Allman shape functions, which is valid for finite drilling rotations, and allows to avoid the use of such a frame. Secondly, the classical Allman quadrilateral shows locking in the in-plane shear test. We study this problem, identify its source, and remove it by enhancing the element with two additional modes, via the Enhanced Assumed Displacement Gradient (EADG) method. To accomplish this, we extend the original version of the method to mixed functionals including rotations. Two variational formulations including the drilling rotation via the rotation constraint (RC) equation are considered; one based on the Green strain, and the other on the relaxed non-symmetric right stretch strain. Numerical tests of the corresponding finite elements show that the improved Allman elements are as exact in linear tests as the EADG4 element, and perform very well in a severe in-plane shear test for one layer of elements undergoing large rotations.

31 citations

Journal ArticleDOI
TL;DR: In this paper, a numerical framework for the simulation of anisotropic thin shells is presented on the basis of polyconvex strain energy functions, where the nonlinear shell theory is based on the Reissner-Mindlin kinematic along with inextensible director vectors.
Abstract: In this contribution the numerical framework for the simulation of anisotropic thin shells is presented on the basis of polyconvex strain energy functions. The nonlinear shell theory is based on the Reissner–Mindlin kinematic along with inextensible director vectors. For the variational framework we consider a three field variational functional taking into account independent displacements, enhanced strains and stress resultants, where the latter field is eliminated by the evaluation of some orthogonality conditions. The iterative enforcement of the zero normal stress condition at the integration points allows consideration of arbitrary three-dimensional constitutive equations. Due to the fact that we are interested in fiber-reinforced materials we consider an additive structure of the energy decoupled in an isotropic part for the matrix and a superposition of transversely isotropic parts for the fiber families. For the representation of the anisotropy we use the concept of structural tensors and formulate the strain energy function in terms of principal and mixed invariants of the right Cauchy–Green tensor and the structural tensor. In order to guarantee the existence of minimizers we focus on polyconvex strain energy functions. The anisotropy effect is documented in several representative examples.

31 citations

Journal ArticleDOI
TL;DR: In this article, a tensor cross product algebra for the analysis of nonlinear beam finite elements subjected to large strains is presented, which facilitates the re-expression of any invariant of the deformation gradient, its cofactor and its determinant in terms of the classical beam strain measures.
Abstract: In this paper, a new computational framework is presented for the analysis of nonlinear beam finite elements subjected to large strains. Specifically, the methodology recently introduced in Bonet et al. (Comput Methods Appl Mech Eng 283:1061---1094, 2015) in the context of three dimensional polyconvex elasticity is extended to the geometrically exact beam model of Simo (Comput Methods Appl Mech Eng 49:55---70, 1985), the starting point of so many other finite element beam type formulations. This new variational framework can be viewed as a continuum degenerate formulation which, moreover, is enhanced by three key novelties. First, in order to facilitate the implementation of the sophisticated polyconvex constitutive laws particularly associated with beams undergoing large strains, a novel tensor cross product algebra by Bonet et al. (Comput Methods Appl Mech Eng 283:1061---1094, 2015) is adopted, leading to an elegant and physically meaningful representation of an otherwise complex computational framework. Second, the paper shows how the novel algebra facilitates the re-expression of any invariant of the deformation gradient, its cofactor and its determinant in terms of the classical beam strain measures. The latter being very useful whenever a classical beam implementation is preferred. This is particularised for the case of a Mooney---Rivlin model although the technique can be straightforwardly generalised to other more complex isotropic and anisotropic polyconvex models. Third, the connection between the two most accepted restrictions for the definition of constitutive models in three dimensional elasticity and beams is shown, bridging the gap between the continuum and its degenerate beam description. This is carried out via a novel insightful representation of the tangent operator.

28 citations

Frequently Asked Questions (2)
Q1. What have the authors contributed in "A computational framework for incompressible electromechanics based on convex multi-variable strain energies for geometrically exact shell theory" ?

In this paper, a new computational framework for the analysis of incompressible Electro Active Polymer ( EAP ) shells subjected to large strains and large electric fields is presented. Two novelties are incorporated in this work. First, the variational and constitutive frameworks developed by the authors in recent publications [ 1–4 ] in the context of three-dimensional electromechanics are particularised/degenerated to the case of geometrically exact shell theory. The proposed formulation follows a rotationless description of the kinematics of the shell, enhanced with extra degrees of freedom corresponding to the thickness stretch and the hydrostatic pressure, critical for the consideration of incompressibility. More specifically, convex multi-variable ( three-dimensional ) constitutive models, complying with the ellipticity condition and hence, satisfying material stability for the entire range of deformations and electric fields, Corresponding author: r. ortigosa @ swansea. Different approaches are investigated for the interpolation of these extra fields and that of the electric potential across the thickness of the shell. 

Moreover, the kinematics of the shell allows for the possibility of compression and stretch across the thickness of the shell [ 17 ], crucial for the consideration of incompressible behaviour. Two approaches have been considered for the interpolation of the electric potential across the thickness of the shell.