scispace - formally typeset

Journal ArticleDOI

α-Conotoxin Vc1.1 Structure-Activity Relationship at the Human α9α10 Nicotinic Acetylcholine Receptor Investigated by Minimal Side Chain Replacement.

16 Oct 2019-ACS Chemical Neuroscience (ACS Chem Neurosci)-Vol. 10, Iss: 10, pp 4328-4336

TL;DR: The results suggest that the hydroxyl group of Vc1.1 Y10 forms hydrogen bond with the carbonyl group of α9 N107 and a hydrogen bond donor is required, whereas Vc2.1 S4 is adjacent to the α9 D166 and D169, and a positive charge residue at this position increases the binding affinity of V c1.

Abstractα-Conotoxin Vc1.1 inhibits the nicotinic acetylcholine receptor (nAChR) α9α10 subtype and has the potential to treat neuropathic chronic pain. To date, the crystal structure of Vc1.1-bound α9α10 nAChR remains unavailable; thus, understanding the structure-activity relationship of Vc1.1 with the α9α10 nAChR remains challenging. In this study, the Vc1.1 side chains were minimally modified to avoid introducing large local conformation perturbation to the interactions between Vc1.1 and α9α10 nAChR. The results suggest that the hydroxyl group of Vc1.1, Y10, forms a hydrogen bond with the carbonyl group of α9 N107 and a hydrogen bond donor is required. However, Vc1.1 S4 is adjacent to the α9 D166 and D169, and a positive charge residue at this position increases the binding affinity of Vc1.1. Furthermore, the carboxyl group of Vc1.1, D11, forms two hydrogen bonds with α9 N154 and R81, respectively, whereas introducing an extra carboxyl group at this position significantly decreases the potency of Vc1.1. Second-generation mutants of Vc1.1 [S4 Dab, N9A] and [S4 Dab, N9W] increased potency at the α9α10 nAChR by 20-fold compared with that of Vc1.1. The [S4 Dab, N9W] mutational effects at positions 4 and 9 of Vc1.1 are not cumulative but are coupled with each other. Overall, our findings provide valuable insights into the structure-activity relationship of Vc1.1 with the α9α10 nAChR and will contribute to further development of more potent and specific Vc1.1 analogues.

Summary (1 min read)

1. Introduction

  • Conotoxins are disulfide-rich peptides from the venom of marine snails of the Conus genus.
  • In the nervous system, they mediate the role of the neurotransmitter acetylcholine and are involved in rapid synaptic transmission.
  • 25-27 The evidence that the nAChRs play a role in a number of different neuronal functions and disorders has given impetus to the search for drugs that selectively modulate different nAChR subtypes.
  • 33,34 To date, the crystal structure of Vc1.1 bound-α9α10 nAChR remains unavailable, and computational modeling in combination with mutagenesis studies have been used as an effective method for understanding the structure-activity relationship.

2. Results and discussion

  • Specific Vc1.1 side chains were minimally modified to validate the previously determined binding modes of Vc1.1 and to understand the structure-activity relationship of Vc1.1 with the α9α10 nAChR.
  • The results disagree with their modeling studies in which two hydrogen bonds were identified between the hydroxyl group of Vc1.1 Y10 and the backbone H atom of α9 D119 and O atom of α9 N107 .
  • The K, Dab and Dap residues all possess a positively charged amine group at the side chain terminus, whereas their potency is remarkably different suggesting that appropriate length of the side chain is essential for the formation of favourable electrostatic interaction with the proposed D169 and D166 in their model .
  • The mutational effects of the [S4K, N9A] double mutation were not cumulative of the single mutations, since the double mutant could only select either the orientation of [S4K]Vc1.1 or [N9A]Vc1.1 upon binding to the receptor.
  • The second generation [S4Dab, N9A]Vc1.1 and [S4Dab, N9W]Vc1.1 analogues were chemically synthesized, and their activity was determined at heterologously expressed hα9α10 nAChR.

3. Conclusions

  • In summary, using previously built α9α10 nAChR model as guidance, the authors designed a library of Vc1.1 analogues by introducing residues with similar physicochemical properties to the wild-type residues in order to validate the accuracy of the model and investigated the structure-activity relationship of Vc1.1 with the hα9α10 nAChR at the atomic level.
  • The authors findings suggest that Vc1.1 S4 forms hydrogen bonds with α9 D166 and D169, and introducing positively charged residues at this position can improve the potency.
  • The P6 is nearby D119, and the introduced Hyp6 approaches D119 and forms a hydrogen bond.
  • The side chain length and the number of negative charges are essential for residue at 10 position of Vc1.1.

Did you find this useful? Give us your feedback

...read more

Content maybe subject to copyright    Report

';6C2?@6AF<3)<99<;4<;4';6C2?@6AF<3)<99<;4<;4
$2@2.?05!;96;2$2@2.?05!;96;2
99.D.??.2.9A5.;12160.9$2@2.?05;@A6ABA2 .0B9AF<3%062;0221606;2.;12.9A5

α<;<A<E6;(0@A?B0AB?2.0A6C6AF?29.A6<;@56=.AA525B:.;αα<;<A<E6;(0@A?B0AB?2.0A6C6AF?29.A6<;@56=.AA525B:.; 
;60<A6;60.02AF905<96;2?202=A<?6;C2@A64.A21/F:6;6:.9@61205.6;;60<A6;60.02AF905<96;2?202=A<?6;C2@A64.A21/F:6;6:.9@61205.6;
?2=9.02:2;A?2=9.02:2;A
*6;5B
!02.;';6C2?@6AF<356;.
.;%52;&.2
';6C2?@6AF<3)<99<;4<;4
5@A.2B<D21B.B
#6;496.;4*B
!02.;';6C2?@6AF<356;.
&.<6.;4
!02.;';6C2?@6AF<356;.
.C611.:@
';6C2?@6AF<3)<99<;4<;4
17.1.:@B<D21B.B
%22;2EA=.423<?.116A6<;.9.BA5<?@
<99<DA56@.;1.116A6<;.9D<?8@.A5AA=@?<B<D21B.B65:?6
".?A<3A5221606;2.;12.9A5%062;02@<::<;@
$20<::2;1216A.A6<;$20<::2;1216A.A6<;
5B*6;&.2.;%52;*B#6;496.;46.;4&.<1.:@.C61.;1+B$6926α<;<A<E6;(0
@A?B0AB?2.0A6C6AF?29.A6<;@56=.AA525B:.;αα;60<A6;60.02AF905<96;2?202=A<?6;C2@A64.A21/F
:6;6:.9@61205.6;?2=9.02:2;A
99.D.??.2.9A5.;12160.9$2@2.?05;@A6ABA2

5AA=@?<B<D21B.B65:?6
$2@2.?05!;96;26@A52<=2;.002@@6;@A6ABA6<;.9?2=<@6A<?F3<?A52';6C2?@6AF<3)<99<;4<;4<?3B?A52?6;3<?:.A6<;
0<;A.0AA52'!)6/?.?F?2@2.?05=B/@B<D21B.B

α<;<A<E6;(0@A?B0AB?2.0A6C6AF?29.A6<;@56=.AA525B:.;αα;60<A6;60<;<A<E6;(0@A?B0AB?2.0A6C6AF?29.A6<;@56=.AA525B:.; ;60<A6;60
.02AF905<96;2?202=A<?6;C2@A64.A21/F:6;6:.9@61205.6;?2=9.02:2;A.02AF905<96;2?202=A<?6;C2@A64.A21/F:6;6:.9@61205.6;?2=9.02:2;A
/@A?.0A/@A?.0A
α<;<A<E6;(06;56/6A@A52;60<A6;60.02AF905<96;2?202=A<?;5$αα@B/AF=2.;15.@A52
=<A2;A6.9A<A?2.A;2B?<=.A56005?<;60=.6;&<1.A2A520?F@A.9@A?B0AB?2<3(0/<B;1αα;5$
?2:.6;@B;.C.69./92A5B@B;12?@A.;16;4A52@A?B0AB?2G.0A6C6AF?29.A6<;@56=<3(0D6A5A52αα
;5$?2:.6;@05.992;46;4;A56@@AB1FA52(0@61205.6;@D2?2:6;6:.99F:<16H21A<.C<61
6;A?<1B06;49.?429<0.90<;3<?:.A6<;=2?AB?/.A6<;A<A526;A2?.0A6<;@/2AD22;(0.;1αα;5$
&52?2@B9A@@B442@AA5.AA525F1?<EF94?<B=<3(0+3<?:@.5F1?<42;/<;1D6A5A520.?/<;F94?<B=
<3α .;1.5F1?<42;/<;11<;<?6@?2>B6?21<D2C2?(0%6@.17.02;AA<A52α.;1
.;1.=<@6A6C205.?42?2@61B2.AA56@=<@6A6<;6;0?2.@2@A52/6;16;4.I;6AF<3(0B?A52?:<?2
A520.?/<EF94?<B=<3(03<?:@AD<5F1?<42;/<;1@D6A5α .;1$?2@=20A6C29FD52?2.@
6;A?<1B06;4.;2EA?.0.?/<EF94?<B=.AA56@=<@6A6<;@64;6H0.;A9F120?2.@2@A52=<A2;0F<3(0%20<;1
42;2?.A6<;:BA.;A@<3(0,%./ -.;1,%./ )-6;0?2.@21=<A2;0F.AA52αα;5$/F
3<910<:=.?21D6A5A5.A<3(0&52,%./ )-:BA.A6<;.923320A@.A=<@6A6<;@.;1<3(0
.?2;<A0B:B9.A6C2/BA.?20<B=921D6A52.05<A52?!C2?.99<B?H;16;4@=?<C612C.9B./926;@645A@6;A<A52
@A?B0AB?2G.0A6C6AF?29.A6<;@56=<3(0D6A5A52αα;5$.;1D6990<;A?6/BA2A<3B?A52?12C29<=:2;A
<3:<?2=<A2;A.;1@=206H0(0.;.9<4B2@
6@06=96;2@6@06=96;2@
21606;2.;12.9A5%062;02@
"B/960.A6<;2A.69@"B/960.A6<;2A.69@
5B*&.2*B#6.;4&1.:@+B$α<;<A<E6;(0@A?B0AB?2.0A6C6AF
?29.A6<;@56=.AA525B:.;αα;60<A6;60.02AF905<96;2?202=A<?6;C2@A64.A21/F:6;6:.9@61205.6;
?2=9.02:2;A%52:60.9 2B?<@062;02
BA5<?@BA5<?@
*6;5B.;%52;&.2#6;496.;4*B&.<6.;4.C611.:@.;1$6926+B
&56@7<B?;.9.?A60926@.C.69./92.A$2@2.?05!;96;25AA=@?<B<D21B.B65:?6

1
α-Conotoxin Vc1.1 Structure-Activity Relationship at the Human α9α10
Nicotinic Acetylcholine Receptor Investigated by Minimal Side Chain
Replacement
Xin Chu,
1,2ǂ
Han-Shen Tae,
3ǂ*
Qingliang Xu,
1,2
Tao Jiang,
1,2
David J. Adams,
3
and Rilei Yu
1,2,4*
1
Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of
Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao
266003, China
2
Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for
Marine Science and Technology, Qingdao 266003, China
3
Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong,
Wollongong, New South Wales 2522, Australia
4
Innovation Center for Marine Drug Screening & Evaluation, Qingdao National
Laboratory for Marine Science and Technology, Qingdao 266003, China
*
Corresponding authors: hstae@uow.edu.au or ryu@ouc.edu.cn
ǂ
Both authors contributed equally to this manuscript.

2
ABSTRACT
α-Conotoxin Vc1.1 inhibits the nicotinic acetylcholine receptor (nAChR) α9α10
subtype and has the potential to treat neuropathic chronic pain. To date, the crystal
structure of Vc1.1 bound-α9α10 nAChR remains unavailable, thus understanding the
structure-activity relationship of Vc1.1 with the α9α10 nAChR remains challenging.
In this study, the Vc1.1 side chains were minimally modified to avoid introducing
large local conformation perturbation to the interactions between Vc1.1 and α9α10
nAChR. The results suggest that the hydroxyl group of Vc1.1, Y10, forms a hydrogen
bond with the carbonyl group of α9 N107 and a hydrogen bond donor is required,
whereas Vc1.1 S4 is adjacent to the α9 D166 and D169, and a positive charge residue
at this position increases the binding affinity of Vc1.1. Furthermore, the carboxyl
group of Vc1.1, D11, forms two hydrogen bonds with α9 N154 and R81 respectively,
whereas introducing an extra carboxyl group at this position significantly decreases
the potency of Vc1.1. Second generation mutants of Vc1.1 [S4Dab, N9A] and [S4Dab,
N9W] increased potency at the α9α10 nAChR by 20-fold compared with that of
Vc1.1. The [S4Dab, N9W] mutational effects at positions 4 and 9 of Vc1.1 are not
cumulative but are coupled with each other. Overall, our findings provide valuable
insights into the structure-activity relationship of Vc1.1 with the α9α10 nAChR and
will contribute to further development of more potent and specific Vc1.1 analogues.
KEYWORDS: α-Conotoxin, nicotinic acetylcholine receptor; structure-activity
relationship; unnatural amino acids; molecular dynamics simulations; mutagenesis

3
1. Introduction
Conotoxins are disulfide-rich peptides from the venom of marine snails of the
Conus genus.
1-3
The conopeptides range from 10 to 40 amino acids in length and have
a compact structure stabilized by several disulfide bonds.
4
Compared with other
natural peptide toxins, conotoxins have considerable advantages such as relatively
small molecular mass, structural stability, high selectivity, potency, and easy
synthesis.
5-9
α-Conotoxins were one of the earliest discovered conotoxins, usually composed
of 12 to 30 amino acid residues,
10
and can specifically target nicotinic acetylcholine
receptors (nAChRs).
11
Several α-conotoxins have shown promising therapeutic
potential
12
with a most prominent example being α-conotoxin Vc1.1 (Figure 1A).
13
Vc1.1 is a 16 amino acid, disulfide-bonded peptide identified from the venom of C.
victoria
14
and potently inhibits the α9α10 nAChR.
15-17
nAChRs are pentameric ligand-gated ion channels consisting of an extracellular
domain, a transmembrane domain and an intracellular domain and are expressed in
the central and peripheral nervous systems and non-neuronal cells.
18,19
The conotoxin
binding site is located at the extracellular domain contributed by the principal (+) and
complementary (−) components of two adjacent subunits (α1-α10, β1-β4, γ, δ or ε).
20
In the nervous system, they mediate the role of the neurotransmitter acetylcholine and
are involved in rapid synaptic transmission.
21-23
The non-neuronal functions of
nAChRs include cellular proliferation and regulation of the immune system. There are
many different nAChR subtypes with preferential distribution in the nervous system,

Figures (7)
Citations
More filters

Journal ArticleDOI
06 Aug 2020-Toxins
TL;DR: This review scrutinises the N-terminal domain of the α-conotoxin family of peptides, a region defined by an invariant disulfide bridge, a turn-inducing proline residue and multiple polar sidechain residues, and focusses on structural features that provide analgesia through inhibition of high-voltage-activated Ca2+ channels.
Abstract: Several analgesic α-conotoxins have been isolated from marine cone snails. Structural modification of native peptides has provided potent and selective analogues for two of its known biological targets-nicotinic acetylcholine and γ-aminobutyric acid (GABA) G protein-coupled (GABAB) receptors. Both of these molecular targets are implicated in pain pathways. Despite their small size, an incomplete understanding of the structure-activity relationship of α-conotoxins at each of these targets has hampered the development of therapeutic leads. This review scrutinises the N-terminal domain of the α-conotoxin family of peptides, a region defined by an invariant disulfide bridge, a turn-inducing proline residue and multiple polar sidechain residues, and focusses on structural features that provide analgesia through inhibition of high-voltage-activated Ca2+ channels. Elucidating the bioactive conformation of this region of these peptides may hold the key to discovering potent drugs for the unmet management of debilitating chronic pain associated with a wide range of medical conditions.

13 citations


Journal ArticleDOI
TL;DR: The structure and function of the α9α10 nAChR are highlighted and studies of α-conotoxins targeting it are reviewed, including their three-dimensional structures, structure optimization strategies, and binding modes at the α 9α10nA chR, as well as their therapeutic potential.
Abstract: α-Conotoxins are disulfide-rich and well-structured peptides, most of which can block nicotinic acetylcholine receptors (nAChRs) with exquisite selectivity and potency. There are various nAChR subtypes, of which the α9α10 nAChR functions as a heteromeric ionotropic receptor in the mammalian cochlea and mediates postsynaptic transmission from the medial olivocochlear. The α9α10 nAChR subtype has also been proposed as a target for the treatment of neuropathic pain and the suppression of breast cancer cell proliferation. Therefore, α-conotoxins targeting the α9α10 nAChR are potentially useful in the development of specific therapeutic drugs and pharmacological tools. Despite dissimilarities in their amino acid sequence and structures, these conopeptides are potent antagonists of the α9α10 nAChR subtype. Consequently, the activity and stability of these peptides have been subjected to chemical modifications. The resulting synthetic analogues have not only functioned as molecular probes to explore ligand binding sites of the α9α10 nAChR, but also have the potential to become candidates for drug development. From the perspectives of medicinal chemistry and pharmacology, we highlight the structure and function of the α9α10 nAChR and review studies of α-conotoxins targeting it, including their three-dimensional structures, structure optimization strategies, and binding modes at the α9α10 nAChR, as well as their therapeutic potential.

3 citations


Proceedings ArticleDOI
17 Oct 2019
TL;DR: The topological landscape of the conopeptides were influenced by the Cα backbone and the nature of the intervening amino acid, and are predominantly electron-poor regions, allowing them to act as Lewis acids, and may play a role in their ability to interact with ACh receptors.
Abstract: Conopeptides are small, disulfide-rich polypeptides that have great potential as sources of possible drug candidates due to their activity against membrane receptors and ion channels. A challenge to the faster high-throughput in silico screening of these potential drug candidates is their diversity in structure and relatively low sequence similarity despite similar functions. In this study, the conopeptides of the α-pharmacological family is studied based on their Cα backbone, surface topology and sequence analysis. Structural alignment using FATCAT shows good alignment of the conopeptides based on their RMSD values. The main factor contributing to the homology of their structures is not only the Cys (Cys) framework forming the disulfide bridges but also the number of intervening amino acids between the Cys residues and the length of the polypeptide. The topological landscape of the conopeptides were influenced by the Cα backbone and the nature of the intervening amino acid, and are predominantly electron-poor regions, allowing them to act as Lewis acids. This may play a role in their ability to interact with ACh receptors.

2 citations


Cites background from "α-Conotoxin Vc1.1 Structure-Activit..."

  • ...Indeed, a large number of subclassifications of receptors have been discovered using conopeptide probes [6], [10], [11], [12], [13]....

    [...]


Proceedings ArticleDOI
17 Oct 2019
TL;DR: In silico structural models and alignments of ω-conotoxin and different pharmacological family with the same cysteine framework (VI/VII) will be discussed using computational methods -- FATCAT and POSA.
Abstract: Conopeptides are small disulfide-rich peptides isolated from the venom of marine cone snails, and they are amongst the most interesting of the venom species. In this paper, in silico structural models and alignments of ω-conotoxin and different pharmacological family with the same cysteine framework (VI/VII) will be discussed using computational methods -- FATCAT and POSA. The results show that with the ω-CTX conopeptide aligned with ω-CTX conopeptide, it would most likely have significantly similar structures with lower RMSD as they both function as blockers of voltage-gated calcium channels, and this conopeptide would be ω-CTX MVIIA 1OMGA aligned with ω-CTX MVIIA 1TTK. On the other hand, having compared different pharmacological with ω-CTX would result to a fewer significantly similar results since their amino acid residues, and ion channels are quite different. Multiple alignment of structures across different pharmacological families show similarities in their polypeptide backbone. Hence,conotoxins sharing the same cysteine framework can be used as models for deducing the polypeptide backbone of a conotoxin with unknown structure.

1 citations


Cites background from "α-Conotoxin Vc1.1 Structure-Activit..."

  • ...To date, conotoxins acts on several mechanisms of actions to produce a variety of effects in the activities of ion channels and membrane receptors, providing new ligands with potential as drug candidates [3], [6], [9], [11], [24]....

    [...]


Journal ArticleDOI
TL;DR: The conotoxin which is secreted by the poison glands on the inside of the venom tube and capsule of the snail provides a simple and effective way to prevent skin scar hyperplasia.
Abstract: Scars are often considered to be skin problems that affect beauty. The tension acting on the edge of the wound is the main factor causing the scar hyperplasia. At present, the clinical use of botulinum toxin A (BTX-A) around the wound to cause transient muscle paralysis reduce the muscle movement around the wound and wound tension to prevent scar hyperplasia during wound healing. But the use of BTX-A to prevent scarring requires the use of a syringe. The syringe can cause trauma and pain when it pricks the skin for BTX-A injection. The conotoxin which is secreted by the poison glands on the inside of the venom tube and capsule of the snail provides a simple and effective way to prevent skin scar hyperplasia. We reviewed the classification of conotoxin, the conotoxin's mechanism of preventing scar hyperplasia, and the research direction of conotoxin in the future and provided reference for promoting the application of conotoxin in preventing skin scar hyperplasia.

References
More filters

Journal ArticleDOI
TL;DR: An N⋅log(N) method for evaluating electrostatic energies and forces of large periodic systems is presented based on interpolation of the reciprocal space Ewald sums and evaluation of the resulting convolutions using fast Fourier transforms.
Abstract: An N⋅log(N) method for evaluating electrostatic energies and forces of large periodic systems is presented. The method is based on interpolation of the reciprocal space Ewald sums and evaluation of the resulting convolutions using fast Fourier transforms. Timings and accuracies are presented for three large crystalline ionic systems.

20,639 citations


Journal ArticleDOI
Abstract: An analytical algorithm, called SETTLE, for resetting the positions and velocities to satisfy the holonomic constraints on the rigid water model is presented. This method is still based on the Cartesian coordinate system and can be used in place of SHAKE and RATTLE. We implemented this algorithm in the SPASMS package of molecular mechanics and dynamics. Several series of molecular dynamics simulations were carried out to examine the performance of the new algorithm in comparison with the original RATTLE method. It was found that SETTLE is of higher accuracy and is faster than RATTLE with reasonable tolerances by three to nine times on a scalar machine. Furthermore, the performance improvement ranged from factors of 26 to 98 on a vector machine since the method presented is not iterative. © 1992 by John Wiley & Sons, Inc.

5,250 citations


Journal ArticleDOI
TL;DR: Together, these backbone and side chain modifications (hereafter called ff14SB) not only better reproduced their benchmarks, but also improved secondary structure content in small peptides and reproduction of NMR χ1 scalar coupling measurements for proteins in solution.
Abstract: Molecular mechanics is powerful for its speed in atomistic simulations, but an accurate force field is required. The Amber ff99SB force field improved protein secondary structure balance and dynamics from earlier force fields like ff99, but weaknesses in side chain rotamer and backbone secondary structure preferences have been identified. Here, we performed a complete refit of all amino acid side chain dihedral parameters, which had been carried over from ff94. The training set of conformations included multidimensional dihedral scans designed to improve transferability of the parameters. Improvement in all amino acids was obtained as compared to ff99SB. Parameters were also generated for alternate protonation states of ionizable side chains. Average errors in relative energies of pairs of conformations were under 1.0 kcal/mol as compared to QM, reduced 35% from ff99SB. We also took the opportunity to make empirical adjustments to the protein backbone dihedral parameters as compared to ff99SB. Multiple sm...

4,140 citations


Journal ArticleDOI
TL;DR: The rules and parameters for one of the most commonly used empirical pKa predictors, PROPKA, are revised based on better physical description of the desolvation and dielectric response for the protein, and a new and consistent approach to interpolate the description between the previously distinct classifications into internal and surface residues is introduced.
Abstract: In this study, we have revised the rules and parameters for one of the most commonly used empirical pKa predictors, PROPKA, based on better physical description of the desolvation and dielectric response for the protein. We have introduced a new and consistent approach to interpolate the description between the previously distinct classifications into internal and surface residues, which otherwise is found to give rise to an erratic and discontinuous behavior. Since the goal of this study is to lay out the framework and validate the concept, it focuses on Asp and Glu residues where the protein pKa values and structures are assumed to be more reliable. The new and improved implementation is evaluated and discussed; it is found to agree better with experiment than the previous implementation (in parentheses): rmsd = 0.79 (0.91) for Asp and Glu, 0.75 (0.97) for Tyr, 0.65 (0.72) for Lys, and 1.00 (1.37) for His residues. The most significant advance, however, is in reducing the number of outliers and removing...

2,085 citations


Journal ArticleDOI
TL;DR: This review provides a comprehensive overview of the advancement of functional and genetic studies in the late 1980s and the more recent revelations of the impact that the rich diversity in function and expression of this receptor family has on neuronal and nonneuronal cells throughout the body.
Abstract: The classical studies of nicotine by Langley at the turn of the 20th century introduced the concept of a “receptive substance,” from which the idea of a “receptor” came to light. Subsequent studies...

1,420 citations


Related Papers (5)
Frequently Asked Questions (1)
Q1. What are the contributions in "Α-conotoxin vc1.1 structure-activity relationship at the human α9α10 nicotinic acetylcholine receptor investigated by minimal side chain replacement" ?

In this paper, the authors proposed the α10 ( + ) -α9 ( − ) interface as the favorable binding site of Vc1.1 at the ( α9 ) 2 ( α10 ) 3 nAChR.