scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Critical Appraisal of the Role of Clay Mineralogy in Lime Stabilization

21 Jan 2015-International Journal of Geosynthetics and Ground Engineering (Springer International Publishing)-Vol. 1, Iss: 1, pp 8
TL;DR: In this article, the authors proposed a methodology to determine the required optimal lime dosage based on scientific criteria, by incorporating the influence of soil properties such as clay mineralogy, specific surface area, soil pH, cation exchange capacity, soil acidity, base saturation capacity, and buffer capacity.
Abstract: The stabilization of problematic fine-grained soils using lime as an admixture is a widely accepted practice, owing to its simplicity and cost-effectiveness. The optimal quantity of lime required for soil stabilization primarily depends upon the reactive nature of soil as well as the degree of improvement desired. The term ‘optimum lime content’ (OLC) defines the amount of lime required for satisfying the immediate/short-term soil–lime interaction, and still providing sufficient amount of free calcium and high residual pH necessary to initiate long-term pozzolanic reaction. Previous researchers proposed various empirical correlations and experimental methodologies for determining OLC, in terms of clay-size fraction and plasticity characteristics of virgin soil. However, the limiting lime content obtained using various conventional methods does not account for the most influencing inherent clay mineralogy of the soil; and hence, the results of these methodologies are observed to be quite disagreeing with each other. In view of these discrepancies, the present study attempts to validate the existing conventional methodologies for OLC determination at an elementary level, by comprehending the fundamental chemistry following soil–lime interactions. Based on the theoretical and experimental observations, it is quite evident that the accuracy of conventional tests is limited by combined influence of chemical and mineralogical properties of soils. Hence, it is proposed to develop a precise methodology to ascertain the required optimal lime dosage based on scientific criteria, by incorporating the influence of soil properties such as clay mineralogy, specific surface area, soil pH, cation exchange capacity, soil acidity, base saturation capacity, and buffer capacity.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, industrial wastes such as Granulated Blast Furnace Slag (GBFS) and Basic Oxygen Furnace SLag (BOFS) activated with calcium oxide (CaO) and medium reactive magnesia (MgO) are used for chemical stabilization of a soft clay.

81 citations

Journal ArticleDOI
TL;DR: In this paper, a laboratory study was undertaken to evaluate and compare the stabilization effectiveness of different percentages of quick and hydrated lime when applied separately to locally available lateritic soil, a major soil group in the tropical and sub tropical regions.
Abstract: A laboratory study was undertaken to evaluate and compare the stabilization effectiveness of different percentages (0, 2.5, 5, 7.5, 10%) of quick and hydrated lime when applied separately to locally available lateritic soil, a major soil group in the tropical and sub tropical regions. Performance evaluation experiments included: Atterberg limits, compaction, unconfined compression tests, California bearing ratio (CBR), swelling potential using CBR instrument and hydraulic conductivity. The soil mixtures used for unconfined compressive strength (UCS), CBR, swelling potential and hydraulic conductivity tests were compacted at optimum moisture content using the British standard light compactive effort and cured for 28 days. It was found that the quicklime caused the soil to have lower plasticity while hydrated lime yielded higher dry unit weight. Also, higher UCS especially at higher dosages (7.5 and 10%) was produced when soil sample was treated with quicklime. Similarly, the CBR values for quicklime sample clearly indicate that quicklime-stabilized soil have superior load bearing capacity. Finally, quicklime treated specimens reached slightly lower swelling values than the hydrated lime while no appreciable distinction in hydraulic conductivity values of specimens treated with the two types of lime was observed. From the foregoing results, quicklime is adjudged to have exhibited somewhat superior engineering properties and therefore creates a more effective stabilization alternative for the soil.

61 citations


Cites background from "A Critical Appraisal of the Role of..."

  • ...Beyond these, it has also been reported that the relative stabilizing effect correlates well with the calcium oxide (CaO) content of various limes [6, 10, 17, 27]....

    [...]

  • ...The most notable effect of lime on fine-grained soils is to produce decreased plasticity, increased workability, reduced swelling and shrinkage potential as well as increased strength [1, 6, 14, 16]....

    [...]

  • ...Of these two types of lime, research has shown that more strength development occurs in soil–quicklime mixtures rather than hydrated lime [3, 6]....

    [...]

  • ...The cation exchange and increased ionic concentration of the pore water results in a contraction of the diffuse double layer, flocculation and agglomeration of particles, and nearly instantaneous reduction in plasticity index (PI) with improved workability [6, 14, 24]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the effect of ground granulated blast furnace slag (GGBFS) and recycled construction waste (CW) on bentonite clay stabilisation was investigated. But, the experimental data shows that the strength improvement is not significant with the addition of only construction waste.
Abstract: In this study, the effect of ground granulated blast furnace slag (GGBFS) and recycled construction waste (CW) on bentonite clay stabilisation were investigated. The unconfined compressive strength (UCS) of specimens was evaluated with different combinations of GGBFS and CW over various curing periods. A series of micro analysis tests consisting of scanning electron microscope, energy dispersive spectrometer and X-ray diffraction were also conducted to determine the microstructural arrangement and mineralogical effect of the stabilisation treatment. The UCS results showed an increment in strength after introduction of GGBFS and CW and the longer curing period produced more pronounced results. The optimum additive ratio was calculated as 5 % of slag and 20 % of construction waste under all curing conditions. The micro analytical results also indicated formation of structural bonds between admixtures and bentonite in stabilised specimens, as slag crystals and bentonite particles were observed to occupy the cavities and vesicles on the construction waste grains. However, the experimental data shows that the strength improvement is not significant with the addition of only construction waste.

41 citations


Cites background from "A Critical Appraisal of the Role of..."

  • ...The expansion or shrinkage ability of the soil depends upon the clay mineralogy (Grim 1968; Cherian and Arnepalli 2015), particle composition and arrangement (Snethen et al....

    [...]

  • ...The expansion or shrinkage ability of the soil depends upon the clay mineralogy (Grim 1968; Cherian and Arnepalli 2015), particle composition and arrangement (Snethen et al. 1977), moisture content (MC), reduction of overburden stress and the presence of cations such as Na?, Ca2?, Mg2? and K?,…...

    [...]

Journal ArticleDOI
TL;DR: In this paper , the suitability of such additives under various conditions and their mechanisms are reviewed in detail, and the degree of stabilization is controlled by several factors such as additive type, additive content, soil type, soil mineralogy, curing period, curing temperature, delay in compaction, pH of soil matrix, and molding water content.
Abstract: Volume instability of expansive soils due to moisture fluctuations is often disastrous, causing severe damages and distortions in the supported structures. It is, therefore, necessary to adequately improve the performance of such soils that they can favorably fulfil the post-construction stability requirements. This can be achieved through chemical stabilization using additives such as lime, cement and fly ash. In this paper, suitability of such additives under various conditions and their mechanisms are reviewed in detail. It is observed that the stabilization process primarily involves hydration, cation exchange, flocculation and pozzolanic reactions. The degree of stabilization is controlled by several factors such as additive type, additive content, soil type, soil mineralogy, curing period, curing temperature, delay in compaction, pH of soil matrix, and molding water content, including presence of nano-silica, organic matter and sulfate compounds. Provision of nano-silica not only improves soil packing but also accelerates the pozzolanic reaction. However, presence of deleterious compounds such as sulfate or organic matter can turn the treated soils unfavorable at times even worser than the unstabilized ones.

26 citations

Journal ArticleDOI
TL;DR: In this article, the dual reaction of alkali activation and pozzolanic reaction was proposed to manufacture ambient-condition-curable structural mortars, and the results showed that the added silica fume as well as the reduced alkali content of the solution enhanced the reactions due to the active participation of the calcium ion supplied by the added hydrated lime in high pH environment.

25 citations

References
More filters
01 Jan 1982

14,888 citations


"A Critical Appraisal of the Role of..." refers background in this paper

  • ...Soil pH is the measure of acidity or alkalinity of the soil solution; hence, also referred as ‘‘soil-water’’ pH [27]....

    [...]

01 Jan 1976
TL;DR: In this paper, the authors developed an understanding of the factors determining and controlling the engineering properties of soil, the factors controlling their magnitude, and the influences of environment and time, and developed a two-part book which contains the following chapters: Part 1 - the nature of soils; bonding, crystal structure and surface characteristics; soil mineralogy; soil formation and soil deposits; determination of soil composition; soil water; clay-water-electrolyte system; soil fabric and its measurement; Part 2 - soil behavior; soil composition and engineering properties; effective, intergranular
Abstract: The book is intended to develop an understanding of the factors determining and controlling the engineering properties of soil, the factors controlling their magnitude, and the influences of environment and time. The two-part book contains the following chapters: Part 1 - the nature of soils; bonding, crystal structure and surface characteristics; soil mineralogy; soil formation and soil deposits; determination of soil composition; soil water; clay-water-electrolyte system; soil fabric and its measurement; Part 2 - soil behavior; soil composition and engineering properties; effective, intergranular and total stress; soil structure and its stability; fabric, structure and property relationships, volume change behavior; strength and deformation behavior; and, conduction phenomena. /TRRL/

3,283 citations

Book ChapterDOI
01 Jan 1982

2,974 citations

Book
01 Jan 1993
TL;DR: In this paper, the authors present an overview of the history of the field of geotechnical engineering with a focus on soil formation and its application in the area of chemical engineering.
Abstract: Preface. CHAPTER 1: INTRODUCTION. 1.1 Soil Behavior in Civil and Environmental Engineering. 1.2 Scope and Organization. 1.3 Getting Started. CHAPTER 2: SOIL FORMATION. 2.1 Introduction. 2.2 The Earth's Crust. 2.3 Geologic Cycle and Geological Time. 2.4 Rock and Mineral Stability. 2.5 Weathering. 2.6 Origin of Clay Minerals and Clay Genesis. 2.7 Soil Profiles and Their Development. 2.8 Sediment Erosion, Transport, and Deposition. 2.9 Postdepositional Changes in Sediments. 2.10 Concluding Comments. Questions and Problems. CHAPTER 3: SOIL MINERALOGY. 3.1 Importance of Soil Mineralogy in Geotechnical Engineering. 3.2 Atomic Structure. 3.3 Interatomic Bonding. 3.4 Secondary Bonds. 3.5 Crystals and Their Properties. 3.6 Crystal Notation. 3.7 Factors Controlling Crystal Structures. 3.8 Silicate Crystals. 3.9 Surfaces. 3.10 Gravel, Sand, and Silt Particles. 3.11 Soil Minerals and Materials Formed by Biogenic and Geochemical Processes. 3.12 Summary of Nonclay Mineral Characteristics. 3.13 Structural Units of the Layer Silicates. 3.14 Synthesis Pattern and Classification of the Clay Minerals. 3.15 Intersheet and Interlayer Bonding in the Clay Minerals. 3.16 The 1:1 Minerals. 3.17 Smectite Minerals. 3.18 Micalike Clay Minerals. 3.19 Other Clay Minerals. 3.20 Summary of Clay Mineral Characteristics. 3.21 Determination of Soil Composition. 3.22 X-ray Diffraction Analysis. 3.23 Other Methods for Compositional Analysis. 3.24 Quantitative Estimation of Soil Components. 3.25 Concluding Comments. Questions and Problems. CHAPTER 4: SOIL COMPOSITION AND ENGINEERING PROPERTIES. 4.1 Introduction. 4.2 Approaches to the Study of Composition and Property Interrelationships. 4.3 Engineering Properties of Granular Soils. 4.4 Dominating Influence of the Clay Phase. 4.5 Atterberg Limits. 4.6 Activity. 4.7 Influences of Exchangeable Cations and pH. 4.8 Engineering Properties of Clay Minerals. 4.9 Effects of Organic Matter. 4.10 Concluding Comments. Questions and Problems. CHAPTER 5: SOIL FABRIC AND ITS MEASUREMENT. 5.1 Introduction. 5.2 Definitions of Fabrics and Fabric Elements. 5.3 Single-Grain Fabrics. 5.4 Contact Force Characterization Using Photoelasticity. 5.5 Multigrain Fabrics. 5.6 Voids and Their Distribution. 5.7 Sample Acquisition and Preparation for Fabric Analysis. 5.8 Methods for Fabric Study. 5.9 Pore Size Distribution Analysis. 5.10 Indirect Methods for Fabric Characterization. 5.11 Concluding Comments. Questions and Problems. CHAPTER 6: SOIL-WATER-CHEMICAL INTERACTIONS. 6.1 Introduction. 6.2 Nature of Ice and Water. 6.3 Influence of Dissolved Ions on Water. 6.4 Mechanisms of Soil-Water Interaction. 6.5 Structure and Properties of Adsorbed Water. 6.6 Clay-Water-Electrolyte System. 6.7 Ion Distributions in Clay-Water Systems. 6.8 Elements of Double-Layer Theory. 6.9 Influences of System Variables on the Double Layer. 6.10 Limitations of the Gouy-Chapman Diffuse Double Layer Model. 6.11 Energy and Force of Repulsion. 6.12 Long-Range Attraction. 6.13 Net Energy of Interaction. 6.14 Cation Exchange-General Considerations. 6.15 Theories for Ion Exchange. 6.16 Soil-Inorganic Chemical Interactions. 6.17 Clay-Organic Chemical Interactions. 6.18 Concluding Comments. Questions and Problems. CHAPTER 7: EFFECTIVE, INTERGRANULAR, AND TOTAL STRESS. 7.1 Introduction. 7.2 Principle of Effective Stress. 7.3 Force Distributions in a Particulate System. 7.4 Interparticle Forces. 7.5 Intergranular Pressure. 7.6 Water Pressures and Potentials. 7.7 Water Pressure Equilibrium in Soil. 7.8 Measurement of Pore Pressures in Soils. 7.9 Effective and Intergranular Pressure. 7.10 Assessment of Terzaghi's Equation. 7.11 Water-Air Interactions in Soils. 7.12 Effective Stress in Unsaturated Soils. 7.13 Concluding Comments. Questions and Problems. CHAPTER 8: SOIL DEPOSITS-THEIR FORMATION, STRUCTURE, GEOTECHNICAL PROPERTIES, AND STABILITY. 8.1 Introduction. 8.2 Structure Development. 8.3 Residual Soils. 8.4 Surficial Residual Soils and Taxonomy. 8.5 Terrestrial Deposits. 8.6 Mixed Continental and Marine Deposits. 8.7 Marine Deposits. 8.8 Chemical and Biological Deposits. 8.9 Fabric, Structure, and Property Relationships: General Considerations. 8.10 Soil Fabric and Property Anisotropy. 8.11 Sand Fabric and Liquefaction. 8.12 Sensitivity and Its Causes. 8.13 Property Interrelationships in Sensitive Clays. 8.14 Dispersive Clays. 8.15 Slaking. 8.16 Collapsing Soils and Swelling Soils. 8.17 Hard Soils and Soft Rocks. 8.18 Concluding Comments. Questions and Problems. CHAPTER 9: CONDUCTION PHENOMENA. 9.1 Introduction. 9.2 Flow Laws and Interrelationships. 9.3 Hydraulic Conductivity. 9.4 Flows Through Unsaturated Soils. 9.5 Thermal Conductivity. 9.6 Electrical Conductivity. 9.7 Diffusion. 9.8 Typical Ranges of Flow Parameters. 9.9 Simultaneous Flows of Water, Current, and Salts Through Soil-Coupled Flows. 9.10 Quantification of Coupled Flows. 9.11 Simultaneous Flows of Water, Current, and Chemicals. 9.12 Electrokinetic Phenomena. 9.13 Transport Coefficients and the Importance of Coupled Flows. 9.14 Compatibility-Effects of Chemical Flows on Properties. 9.15 Electroosmosis. 9.16 Electroosmosis Efficiency. 9.17 Consolidation by Electroosmosis. 9.18 Electrochemical Effects. 9.19 Electrokinetic Remediation. 9.20 Self-Potentials. 9.21 Thermally Driven Moisture Flows. 9.22 Ground Freezing. 9.23 Concluding Comments. Questions and Problems. CHAPTER 10: VOLUME CHANGE BEHAVIOR. 10.1 Introduction. 10.2 General Volume Change Behavior of Soils. 10.3 Preconsolidation Pressure. 10.4 Factors Controlling Resistance to Volume Change. 10.5 Physical Interactions in Volume Change. 10.6 Fabric, Structure, and Volume Change. 10.7 Osmotic Pressure and Water Adsorption Influences on Compression and Swelling. 10.8 Influences of Mineralogical Detail in Soil Expansion. 10.9 Consolidation. 10.10 Secondary Compression. 10.11 In Situ Horizontal Stress (K 0 ). 10.12 Temperature-Volume Relationships. 10.13 Concluding Comments. Questions and Problems. CHAPTER 11 STRENGTH AND DEFORMATION BEHAVIOR. 11.1 Introduction. 11.2 General Characteristics of Strength and Deformation. 11.3 Fabric, Structure, and Strength. 11.4 Friction Between Solid Surfaces. 11.5 Frictional Behavior of Minerals. 11.6 Physical Interactions Among Particles. 11.7 Critical State: A Useful Reference Condition. 11.8 Strength Parameters for Sands. 11.9 Strength Parameters for Clays. 11.10 Behavior After Peak and Strain Localization. 11.11 Residual State and Residual Strength. 11.12 Intermediate Stress Effects and Anisotropy. 11.13 Resistance to Cyclic Loading and Liquefaction. 11.14 Strength of Mixed Soils. 11.15 Cohesion. 11.16 Fracturing of Soils. 11.17 Deformation Characteristics. 11.18 Linear Elastic Stiffness. 11.19 Transition from Elastic to Plastic States. 11.20 Plastic Deformation. 11.21 Temperature Effects. 11.22 Concluding Comments. Questions and Problems. CHAPTER 12: TIME EFFECTS ON STRENGTH AND DEFORMATION. 12.1 Introduction. 12.2 General Characteristics. 12.3 Time-Dependent Deformation-Structure Interaction. 12.4 Soil Deformation as a Rate Process. 12.5 Bonding, Effective Stresses, and Strength. 12.6 Shearing Resistance as a Rate Process. 12.7 Creep and Stress Relaxation. 12.8 Rate Effects on Stress-Strain Relationships. 12.9 Modeling of Stress-Strain-Time Behavior. 12.10 Creep Rupture. 12.11 Sand Aging Effects and Their Significance. 12.12 Mechanical Processes of Aging. 12.13 Chemical Processes of Aging. 12.14 Concluding Comments. Questions and Problems. List of Symbols. References. Index.

2,942 citations