scispace - formally typeset
Journal ArticleDOI

A Critical Review of Li/Air Batteries

Reads0
Chats0
TLDR
In this paper, the authors discuss the most critical challenges to developing robust, high-energy Li/air batteries and suggest future research directions to understand and overcome these challenges and predict that Li-air batteries will primarily remain a research topic for the next several years.
Abstract
Lithium/air batteries, based on their high theoretical specific energy, are an extremely attractive technology for electrical energy storage that could make long-range electric vehicles widely affordable. However, the impact of this technology has so far fallen short of its potential due to several daunting challenges. In nonaqueous Li/air cells, reversible chemistry with a high current efficiency over several cycles has not yet been established, and the deposition of an electrically resistive discharge product appears to limit the capacity. Aqueous cells require water-stable lithium-protection membranes that tend to be thick, heavy, and highly resistive. Both types of cell suffer from poor oxygen redox kinetics at the positive electrode and deleterious volume and morphology changes at the negative electrode. Closed Li/air systems that include oxygen storage are much larger and heavier than open systems, but so far oxygen- and OH − -selective membranes are not effective in preventing contamination of cells. In this review we discuss the most critical challenges to developing robust, high-energy Li/air batteries and suggest future research directions to understand and overcome these challenges. We predict that Li/air batteries will primarily remain a research topic for the next several years. However, if the fundamental challenges can be met, the Li/air battery has the potential to significantly surpass the energy storage capability of today’s Li-ion batteries.

read more

Citations
More filters
Journal ArticleDOI

The Li-ion rechargeable battery: a perspective.

TL;DR: New strategies are needed for batteries that go beyond powering hand-held devices, such as using electrode hosts with two-electron redox centers; replacing the cathode hosts by materials that undergo displacement reactions; and developing a Li(+) solid electrolyte separator membrane that allows an organic and aqueous liquid electrolyte on the anode and cathode sides, respectively.
Journal ArticleDOI

Lithium metal anodes for rechargeable batteries

TL;DR: In this article, various factors that affect the morphology and Coulombic efficiency of Li metal anodes have been analyzed, and the results obtained by modelling of Li dendrite growth have also been reviewed.
Journal ArticleDOI

Lithium battery chemistries enabled by solid-state electrolytes

TL;DR: In this article, the authors provide a background overview and discuss the state of the art, ion-transport mechanisms and fundamental properties of solid-state electrolyte materials of interest for energy storage applications.
Journal ArticleDOI

Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries

TL;DR: In this article, the authors show that 2 and 5 times higher energy densities are required to meet the performance goals of a future generation of plug-in hybrid-electric vehicles (PHEVs) with a 40-80 mile all-electric range, and all-EVs with a 300-400 mile range, respectively.
Journal ArticleDOI

Recent advances in zinc–air batteries

TL;DR: The fundamentals, challenges, and latest exciting advances related to zinc-air research are presented, and the detrimental effect of CO2 on battery performance is emphasized, and possible solutions summarized.
References
More filters
Book

CRC Handbook of Chemistry and Physics

TL;DR: CRC handbook of chemistry and physics, CRC Handbook of Chemistry and Physics, CRC handbook as discussed by the authors, CRC Handbook for Chemistry and Physiology, CRC Handbook for Physics,
Journal ArticleDOI

Hard and soft acids and bases

TL;DR: In this paper, the rate data for the generalized nucleophilic displacement reaction were reviewed, and the authors presented a method to estimate the rate of the generalized displacement reaction in terms of the number of nucleophiles.
Journal ArticleDOI

Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries

TL;DR: In this article, the authors showed that a reversible loss in capacity with increasing current density appears to be associated with a diffusion-limited transfer of lithium across the two-phase interface.
Journal ArticleDOI

High-performance lithium battery anodes using silicon nanowires

TL;DR: The theoretical charge capacity for silicon nanowire battery electrodes is achieved and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.
Related Papers (5)