scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A critical review on convective heat transfer correlations of nanofluids

01 Aug 2011-Renewable & Sustainable Energy Reviews (Pergamon)-Vol. 15, Iss: 6, pp 3271-3277
TL;DR: In this article, a review summarizes the correlations development for fluid flow and heat transfer characteristics of nanofluids in forced and free convection flows, and shows that most of the investigations recommended conventional friction factor correlation of base fluid for pressure drop prediction of the nano-fluid for both laminar and turbulent flows in minichannel as well as in microchannel.
Abstract: Nanofluids are engineered colloids made of a base fluid and nanoparticles, which become potential candidate for next generation heat transfer medium. Nanofluids have higher thermal conductivity and single-phase heat transfer coefficients than their base fluids. The heat transfer coefficient increases appear to go beyond the mere thermal conductivity effect, and cannot be predicted by traditional pure fluid correlations. This review summarizes the correlations development for fluid flow and heat transfer characteristics of nanofluids in forced and free convection flows. The review shows that most of the investigations recommended conventional friction factor correlation of base fluid for pressure drop prediction of the nanofluids for both laminar and turbulent flows in minichannel as well as in microchannel. However, the conventional correlation is not suitable for heat transfer coefficient of nanofluid and hence various correlations have been suggested for the Nusselt number for both laminar and turbulent flow. However, the large deviation of predicted values for proposed correlations has been observed may be due to strong influence of particle properties and nanofluid composition on flow and heat transfer characteristics, lack of common understanding on basic mechanism of nanofluid flow and insufficient experimental data on nanofluid heat transfer. Hence, a general framework for heat transfer correlation needs to be developed.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigated the effects of nanofluids on the performance of solar collectors and solar water heaters from the efficiency, economic and environmental considerations viewpoints, and made some suggestions to use the nanoparticles in different solar thermal systems such as photovoltaic/thermal systems, solar ponds, solar thermoelectric cells, and so on.

1,069 citations

Journal ArticleDOI
TL;DR: In this paper, a review summarizes recent researches on synthesis, thermophysical properties, heat transfer and pressure drop characteristics, possible applications and challenges of hybrid nanofluids, and showed that proper hybridization may make the hybrid nanoparticles very promising for heat transfer enhancement, however, lot of research works are still needed in the fields of preparation and stability, characterization and applications to overcome the challenges.
Abstract: Researches on the nanofluids have been increased very rapidly over the past decade. In spite of some inconsistency in the reported results and insufficient understanding of the mechanism of the heat transfer in nanofluids, it has been emerged as a promising heat transfer fluid. In the continuation of nanofluids research, the researchers have also tried to use hybrid nanofluid recently, which is engineered by suspending dissimilar nanoparticles either in mixture or composite form. The idea of using hybrid nanofluids is to further improvement of heat transfer and pressure drop characteristics by trade-off between advantages and disadvantages of individual suspension, attributed to good aspect ratio, better thermal network and synergistic effect of nanomaterials. This review summarizes recent researches on synthesis, thermophysical properties, heat transfer and pressure drop characteristics, possible applications and challenges of hybrid nanofluids. Review showed that proper hybridization may make the hybrid nanofluids very promising for heat transfer enhancement, however, lot of research works is still needed in the fields of preparation and stability, characterization and applications to overcome the challenges.

846 citations

Journal ArticleDOI
TL;DR: Nanofluids have seen enormous growth in popularity since they were proposed by Choi in 1995 as mentioned in this paper, and there were nearly 700 research articles where the term nanofluid was used in the title, showing rapid growth from 2006 (175) and 2001 (10).
Abstract: Nanofluids—a simple product of the emerging world of nanotechnology—are suspensions of nanoparticles (nominally 1–100 nm in size) in conventional base fluids such as water, oils, or glycols. Nanofluids have seen enormous growth in popularity since they were proposed by Choi in 1995. In the year 2011 alone, there were nearly 700 research articles where the term nanofluid was used in the title, showing rapid growth from 2006 (175) and 2001 (10). The first decade of nanofluid research was primarily focused on measuring and modeling fundamental thermophysical properties of nanofluids (thermal conductivity, density, viscosity, heat transfer coefficient). Recent research, however, explores the performance of nanofluids in a wide variety of other applications. Analyzing the available body of research to date, this article presents recent trends and future possibilities for nanofluids research and suggests which applications will see the most significant improvement from employing nanofluids.

679 citations


Cites background from "A critical review on convective hea..."

  • ...[30], [53], [58], [59], [78], [122], [151–154]), so here we present only a brief description of...

    [...]

  • ...significantly increased conductive [3–24][38-58] and convective [59-68] heat transfer properties....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the important published articles on the enhancement of the convection heat transfer in heat exchangers using nanofluids on two topics: theoretical and experimental results for the effective thermal conductivity, viscosity and the Nusselt number reported by several authors.
Abstract: The purpose of this review summarizes the important published articles on the enhancement of the convection heat transfer in heat exchangers using nanofluids on two topics. The first section focuses on presenting the theoretical and experimental results for the effective thermal conductivity, viscosity and the Nusselt number reported by several authors. The second section concentrates on application of nanofluids in various types of heat exchangers: plate heat exchangers, shell and tube heat exchangers, compact heat exchangers and double pipe heat exchangers.

421 citations

Journal ArticleDOI
TL;DR: In this article, a review of the literature on entropy generation due to flow and heat transfer of nanofluids in different geometries and flow regimes is presented, and some suggestions for future work are presented.

416 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the authors considered seven slip mechanisms that can produce a relative velocity between the nanoparticles and the base fluid and concluded that only Brownian diffusion and thermophoresis are important slip mechanisms in nanofluids.
Abstract: Nanofluids are engineered colloids made of a base fluid and nanoparticles (1-100 nm) Nanofluids have higher thermal conductivity' and single-phase heat transfer coefficients than their base fluids In particular the heat transfer coefficient increases appear to go beyond the mere thermal-conductivity effect, and cannot be predicted by traditional pure-fluid correlations such as Dittus-Boelter's In the nanofluid literature this behavior is generally attributed to thermal dispersion and intensified turbulence, brought about by nanoparticle motion To test the validity of this assumption, we have considered seven slip mechanisms that can produce a relative velocity between the nanoparticles and the base fluid These are inertia, Brownian diffusion, thermophoresis, diffusioplwresis, Magnus effect, fluid drainage, and gravity We concluded that, of these seven, only Brownian diffusion and thermophoresis are important slip mechanisms in nanofluids Based on this finding, we developed a two-component four-equation nonhomogeneous equilibrium model for mass, momentum, and heat transport in nanofluids A nondimensional analysis of the equations suggests that energy transfer by nanoparticle dispersion is negligible, and thus cannot explain the abnormal heat transfer coefficient increases Furthermore, a comparison of the nanoparticle and turbulent eddy time and length scales clearly indicates that the nanoparticles move homogeneously with the fluid in the presence of turbulent eddies so an effect on turbulence intensity is also doubtful Thus, we propose an alternative explanation for the abnormal heat transfer coefficient increases: the nanofluid properties may vary significantly within the boundary layer because of the effect of the temperature gradient and thermophoresis For a heated fluid, these effects can result in a significant decrease of viscosity within the boundary layer, thus leading to heat transfer enhancement A correlation structure that captures these effects is proposed

5,329 citations

Journal ArticleDOI
TL;DR: In this article, an innovative new class of heat transfer fluids can be engineered by suspending metallic nanoparticles in conventional heat-transfer fluids, which are expected to exhibit high thermal conductivities compared to those of currently used heat transfer fluid, and they represent the best hope for enhancing heat transfer.
Abstract: Low thermal conductivity is a primary limitation in the development of energy-efficient heat transfer fluids that are required in many industrial applications. In this paper we propose that an innovative new class of heat transfer fluids can be engineered by suspending metallic nanoparticles in conventional heat transfer fluids. The resulting {open_quotes}nanofluids{close_quotes} are expected to exhibit high thermal conductivities compared to those of currently used heat transfer fluids, and they represent the best hope for enhancement of heat transfer. The results of a theoretical study of the thermal conductivity of nanofluids with copper nanophase materials are presented, the potential benefits of the fluids are estimated, and it is shown that one of the benefits of nanofluids will be dramatic reductions in heat exchanger pumping power.

4,634 citations

Journal ArticleDOI
TL;DR: In this article, the authors used a Brookfield rotating viscometer to measure the viscosities of the dispersed fluids with γ-alumina (Al2O3) and titanium dioxide (TiO2) particles at a 10% volume concentration.
Abstract: Turbulent friction and heat transfer behaviors of dispersed fluids (i.e., uttrafine metallic oxide particles suspended in water) in a circular pipe were investigated experimentally. Viscosity measurements were also conducted using a Brookfield rotating viscometer. Two different metallic oxide particles, γ-alumina (Al2O3) and titanium dioxide (TiO2), with mean diameters of 13 and 27 nm, respectively, were used as suspended particles. The Reynolds and Prandtl numbers varied in the ranges l04-I05 and 6.5-12.3, respectively. The viscosities of the dispersed fluids with γ-Al2O3 and TiO2 particles at a 10% volume concentration were approximately 200 and 3 times greater than that of water, respectively. These viscosity results were significantly larger than the predictions from the classical theory of suspension rheology. Darcy friction factors for the dispersed fluids of the volume concentration ranging from 1% to 3% coincided well with Kays' correlation for turbulent flow of a single-phase fluid. The Nusselt n...

3,730 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed two different approaches for deriving heat transfer correlation of the nanofluid, and investigated the mechanism of heat transfer enhancement of the nano-fluid.

2,355 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a procedure for preparing a nanofluid which is a suspension consisting of nanophase powders and a base liquid, and their TEM photographs are given to illustrate the stability and evenness of suspension.

2,341 citations