scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A critical synthesis of thermophysical characteristics of nanofluids

TL;DR: A critical synthesis of the variants within the thermophysical properties of nanofluids is presented in this article, where the experimental results for the effective thermal conductivity and viscosity reported by several authors are in disagreement.
About: This article is published in International Journal of Heat and Mass Transfer.The article was published on 2011-09-01. It has received 943 citations till now. The article focuses on the topics: Nanofluid & Thermal conductivity.
Citations
More filters
BookDOI
23 Jun 2015
TL;DR: Theoretical analysis of transport in Porous Media: Multiscale Modeling of Porous Medium Systems as discussed by the authors is a multiscale approach for modelling Porous medium systems.
Abstract: General Characteristics and Modeling of Porous Media Multiscale Modeling of Porous Medium Systems Amanda L. Dye, James E. McClure, William G. Gray, and Cass T. Miller Advanced Theories of Two-Phase Flow in Porous Media S. Majid Hassanizadeh Characterization of Fractures and Fracture Network of Porous Media Muhammad Sahimi Thin Porous Media Marc Prat and Tristan Agaesse Magnetically Stabilized and Fluidized Beds in Science and Technology: A Review Teresa Castelo-Grande, Paulo A. Augusto, Angel M. Estevez, Domingos Barbosa, Jesus Ma. Rodriguez, Audelino Alvaro, and Carmen Torrente Lift Generation in Highly Compressible Porous Media: From Red Cells to Skiing to Soft Lubrication Qianhong Wu Transport in Porous Media Theoretical Analysis of Transport in Porous Media: Multiequation and Hybrid Models for a Generic Transport Problem with Nonlinear Source Terms Yohan Davit and Michel Quintard Porous Media Theory for Membrane Transport Phenomena A. Nakayama, Y. Sano, T. Nishimura, and K. Nagase Effective Transport Properties of Porous Media by Modeling Moran Wang Effective Transport through Porous Media under Nonequilibrium Relaxation Conditions Faruk Civan Modeling Approach for Gradient-Based Motion of Microorganisms in Porous Media and Applications in Biosystems Zineddine Alloui and Tri Nguyen-Quang Turbulence in Porous Media Feedback Control for Promoting or Suppressing the Transition to Weak Turbulence in Porous Media Convection Peter Vadasz Advances in Modeling Turbulence Phenomena in Heterogeneous Media: Reactive Systems Marcelo J.S. de Lemos Heat Transfer of Nanofluids in Porous Media Effects of Nanofluids on Convection in Porous Media A. Nield and A.V. Kuznetsov Analyzing Nanofluids Suspension Using the Porous Media Interface Heat Transfer Model Peter Vadasz Thermal Transport in Porous Media Thermal Transport in Highly Porous Cellular Materials Raymond Viskanta Convection of a Bingham Fluid in a Porous Medium Andrew S. Rees High-Heat-Flux Distributed Capillary Artery Evaporators Gisuk Hwang, Chanwoo Park, and Massoud Kaviany Impinging Jets in Porous Media Bernardo Buonomo, Oronzio Manca, and Sergio Nardini Thermohydromechanical Behavior of Poroelastic Media A. Patrick S. Selvadurai Thermogravitational Diffusion in a Porous Medium Saturated by a Binary Fluid Abdelkader Mojtabi, Marie Catherine Charrier-Mojtabi, Bilal El Hajjar, and Yazdan Pedram Razi Geological Applications in Porous Media Digital Petrophysics: Imaging, Modeling, and Experimental Challenges Related to Porous Media in Oil Fields Peter Tilke Modeling of Subsurface CO2 Migration at Geological Carbon Sequestration Sites in Deep Saline Aquifers Sumit Mukhopadhyay Groundwater Flows and Velocity Measurements Shigeo Kimura Geostatistical Simulation and Reconstruction of Porous Media Pejman Tahmasebi and Muhammad Sahimi Microbially Induced Carbonate Precipitation in the Subsurface: Fundamental Reaction and Transport Processes James Connolly and Robin Gerlach

1,560 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the effects of nanofluids on the performance of solar collectors and solar water heaters from the efficiency, economic and environmental considerations viewpoints, and made some suggestions to use the nanoparticles in different solar thermal systems such as photovoltaic/thermal systems, solar ponds, solar thermoelectric cells, and so on.

1,069 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the magnetohydrodynamic flow of non-Newtonian nanofluid in a pipe and derived explicit analytical expressions for the velocity field, the temperature distribution and nano concentration.

543 citations

Journal ArticleDOI
13 Sep 2021
TL;DR: In this article, the authors discussed the flow of Powell-Eyring fluid mixed with hybrid nanoparticles over a melting parabolic stretched surface and derived flow rheology expressions under boundary layer theory.
Abstract: Several mechanisms in industrial use have significant applications in thermal transportation. The inclusion of hybrid nanoparticles in different mixtures has been studied extensively by researchers due to their wide applications. This report discusses the flow of Powell–Eyring fluid mixed with hybrid nanoparticles over a melting parabolic stretched surface. Flow rheology expressions have been derived under boundary layer theory. Afterwards, similarity transformation has been applied to convert PDEs into associated ODEs. These transformed ODEs have been solved the using finite element procedure (FEP) in the symbolic computational package MAPLE 18.0. The applicability and effectiveness of FEM are presented by addressing grid independent analysis. The reliability of FEM is presented by computing the surface drag force and heat transportation coefficient. The used methodology is highly effective and it can be easily implemented in MAPLE 18.0 for other highly nonlinear problems. It is observed that the thermal profile varies directly with the magnetic parameter, and the opposite trend is recorded for the Prandtl number.

417 citations

References
More filters
Book
01 Jan 1873
TL;DR: The most influential nineteenth-century scientist for twentieth-century physics, James Clerk Maxwell (1831-1879) demonstrated that electricity, magnetism and light are all manifestations of the same phenomenon: the electromagnetic field as discussed by the authors.
Abstract: Arguably the most influential nineteenth-century scientist for twentieth-century physics, James Clerk Maxwell (1831–1879) demonstrated that electricity, magnetism and light are all manifestations of the same phenomenon: the electromagnetic field. A fellow of Trinity College Cambridge, Maxwell became, in 1871, the first Cavendish Professor of Physics at Cambridge. His famous equations - a set of four partial differential equations that relate the electric and magnetic fields to their sources, charge density and current density - first appeared in fully developed form in his 1873 Treatise on Electricity and Magnetism. This two-volume textbook brought together all the experimental and theoretical advances in the field of electricity and magnetism known at the time, and provided a methodical and graduated introduction to electromagnetic theory. Volume 2 covers magnetism and electromagnetism, including the electromagnetic theory of light, the theory of magnetic action on light, and the electric theory of magnetism.

9,565 citations

Journal ArticleDOI
TL;DR: In this article, the Berechnung der dielektrizitatatkonstanten and der Leitfahigkeiten fur Elektriatitat and Warme der Mischkorper aus isotropen Bestandteilen behandelt.
Abstract: Es werden verschiedene physikalische Konstanten heterogener Korper aus den Konstanten ihrer homogenen Bestandteile nach einer einheitlichen Methode berechnet. In dieser ersten Arbeit wird die Berechnung der Dielektrizitatskonstanten und der Leitfahigkeiten fur Elektrizitat und Warme der Mischkorper aus isotropen Bestandteilen behandelt. Die Genauigkeit der alteren Formeln wird untersucht und die bis jetzt unbekannten Konstanten dieser Formeln werden berechnet. Sodann wird die Theorie gepruft an Messungen der Leitfahigkeit bei heterogenen Metallegierungen und an den DK. von gepresten Pulvern und Emulsionen; die verschiedenen Formeln werden bestatigt. Bei dieser Anwendung werden einige Widerspruche zwischen fruheren Untersuchungen aufgehoben und es wird versucht, einige ungenau bekannte DK. genauer zu bestimmen.

7,155 citations

Journal ArticleDOI
TL;DR: In this article, the authors considered seven slip mechanisms that can produce a relative velocity between the nanoparticles and the base fluid and concluded that only Brownian diffusion and thermophoresis are important slip mechanisms in nanofluids.
Abstract: Nanofluids are engineered colloids made of a base fluid and nanoparticles (1-100 nm) Nanofluids have higher thermal conductivity' and single-phase heat transfer coefficients than their base fluids In particular the heat transfer coefficient increases appear to go beyond the mere thermal-conductivity effect, and cannot be predicted by traditional pure-fluid correlations such as Dittus-Boelter's In the nanofluid literature this behavior is generally attributed to thermal dispersion and intensified turbulence, brought about by nanoparticle motion To test the validity of this assumption, we have considered seven slip mechanisms that can produce a relative velocity between the nanoparticles and the base fluid These are inertia, Brownian diffusion, thermophoresis, diffusioplwresis, Magnus effect, fluid drainage, and gravity We concluded that, of these seven, only Brownian diffusion and thermophoresis are important slip mechanisms in nanofluids Based on this finding, we developed a two-component four-equation nonhomogeneous equilibrium model for mass, momentum, and heat transport in nanofluids A nondimensional analysis of the equations suggests that energy transfer by nanoparticle dispersion is negligible, and thus cannot explain the abnormal heat transfer coefficient increases Furthermore, a comparison of the nanoparticle and turbulent eddy time and length scales clearly indicates that the nanoparticles move homogeneously with the fluid in the presence of turbulent eddies so an effect on turbulence intensity is also doubtful Thus, we propose an alternative explanation for the abnormal heat transfer coefficient increases: the nanofluid properties may vary significantly within the boundary layer because of the effect of the temperature gradient and thermophoresis For a heated fluid, these effects can result in a significant decrease of viscosity within the boundary layer, thus leading to heat transfer enhancement A correlation structure that captures these effects is proposed

5,329 citations


Additional excerpts

  • ...[67] J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Transfer 128 (2006) 240–250....

    [...]

  • ...[108] S.J. Kim, I.C. Bang, J. Buongiorno, L.W. Hu, Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids, Appl....

    [...]

  • ...[109] S.J. Kim, I.C. Bang, J. Buongiorno, L.W. Hu, Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux, Int....

    [...]

  • ...[105] S.J. Kim, T. McKrell, J. Buongiorno, L.W. Hu, Experimental study of flow critical heat flux in alumina–water, zinc-oxide–water and diamond–water nanofluids, J. Heat Transfer 131 (4) (2009)....

    [...]

  • ...Buongiorno [67] leff 1⁄4 ð1þ 39:11/p þ 533:9/(2)pÞlf – Curve fitting of Pak and Cho [16] data...

    [...]

Journal ArticleDOI
TL;DR: In this article, an innovative new class of heat transfer fluids can be engineered by suspending metallic nanoparticles in conventional heat-transfer fluids, which are expected to exhibit high thermal conductivities compared to those of currently used heat transfer fluid, and they represent the best hope for enhancing heat transfer.
Abstract: Low thermal conductivity is a primary limitation in the development of energy-efficient heat transfer fluids that are required in many industrial applications. In this paper we propose that an innovative new class of heat transfer fluids can be engineered by suspending metallic nanoparticles in conventional heat transfer fluids. The resulting {open_quotes}nanofluids{close_quotes} are expected to exhibit high thermal conductivities compared to those of currently used heat transfer fluids, and they represent the best hope for enhancement of heat transfer. The results of a theoretical study of the thermal conductivity of nanofluids with copper nanophase materials are presented, the potential benefits of the fluids are estimated, and it is shown that one of the benefits of nanofluids will be dramatic reductions in heat exchanger pumping power.

4,634 citations


"A critical synthesis of thermophysi..." refers background in this paper

  • ...For instance, Xuan and Li [15] conducted an experimental study to investigate convective heat transfer and flow features of nanofluids....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors used a Brookfield rotating viscometer to measure the viscosities of the dispersed fluids with γ-alumina (Al2O3) and titanium dioxide (TiO2) particles at a 10% volume concentration.
Abstract: Turbulent friction and heat transfer behaviors of dispersed fluids (i.e., uttrafine metallic oxide particles suspended in water) in a circular pipe were investigated experimentally. Viscosity measurements were also conducted using a Brookfield rotating viscometer. Two different metallic oxide particles, γ-alumina (Al2O3) and titanium dioxide (TiO2), with mean diameters of 13 and 27 nm, respectively, were used as suspended particles. The Reynolds and Prandtl numbers varied in the ranges l04-I05 and 6.5-12.3, respectively. The viscosities of the dispersed fluids with γ-Al2O3 and TiO2 particles at a 10% volume concentration were approximately 200 and 3 times greater than that of water, respectively. These viscosity results were significantly larger than the predictions from the classical theory of suspension rheology. Darcy friction factors for the dispersed fluids of the volume concentration ranging from 1% to 3% coincided well with Kays' correlation for turbulent flow of a single-phase fluid. The Nusselt n...

3,730 citations


"A critical synthesis of thermophysi..." refers background in this paper

  • ...– TiO2–water, dp = 27 nm Present work leff 1⁄4 ð1þ 23:09/p þ 1525:3/ 2 pÞlf 0 6 /p 6 0:04 – Curve fitting of Pak and Cho [16] data...

    [...]

  • ...Present work leff 1⁄4 ð1þ 3:544/p þ 169:46/(2)pÞlf 0 6 /p 6 0:1 – Curve fitting of Pak and Cho [16] data...

    [...]

  • ...tion of 3% was found to be 12% smaller than that of pure water when considering a constant average velocity [16]....

    [...]

  • ...Present work leff 1⁄4 0:444 0:254/p þ 0:0368/ 2 p þ 26:333 /p T 59:311 /(2)p T(2) 20 6 TðoCÞ 6 70; /p 1⁄4 1:34%;2:78% – Curve fitting of Pak and Cho [16] data dp = 13 nm – Units: mPa s...

    [...]

  • ...For example, Pak and Cho [16] demonstrated that the Nusselt number for Al2O3–water and TiO2–water nanofluids increased with increasing volume fraction as well as the Reynolds number....

    [...]