scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

A Deep Regression Architecture with Two-Stage Re-initialization for High Performance Facial Landmark Detection

01 Jul 2017-pp 3691-3700
TL;DR: This paper presents a deep regression architecture with two-stage re-initialization to explicitly deal with the initialization problem and obtains promising results using different kinds of unstable initialization.
Abstract: Regression based facial landmark detection methods usually learns a series of regression functions to update the landmark positions from an initial estimation. Most of existing approaches focus on learning effective mapping functions with robust image features to improve performance. The approach to dealing with the initialization issue, however, receives relatively fewer attentions. In this paper, we present a deep regression architecture with two-stage re-initialization to explicitly deal with the initialization problem. At the global stage, given an image with a rough face detection result, the full face region is firstly re-initialized by a supervised spatial transformer network to a canonical shape state and then trained to regress a coarse landmark estimation. At the local stage, different face parts are further separately re-initialized to their own canonical shape states, followed by another regression subnetwork to get the final estimation. Our proposed deep architecture is trained from end to end and obtains promising results using different kinds of unstable initialization. It also achieves superior performances over many competing algorithms.

Content maybe subject to copyright    Report

Citations
More filters
Posted Content
TL;DR: The superiority of the proposed HRNet in a wide range of applications, including human pose estimation, semantic segmentation, and object detection, is shown, suggesting that the HRNet is a stronger backbone for computer vision problems.
Abstract: High-resolution representations are essential for position-sensitive vision problems, such as human pose estimation, semantic segmentation, and object detection. Existing state-of-the-art frameworks first encode the input image as a low-resolution representation through a subnetwork that is formed by connecting high-to-low resolution convolutions \emph{in series} (e.g., ResNet, VGGNet), and then recover the high-resolution representation from the encoded low-resolution representation. Instead, our proposed network, named as High-Resolution Network (HRNet), maintains high-resolution representations through the whole process. There are two key characteristics: (i) Connect the high-to-low resolution convolution streams \emph{in parallel}; (ii) Repeatedly exchange the information across resolutions. The benefit is that the resulting representation is semantically richer and spatially more precise. We show the superiority of the proposed HRNet in a wide range of applications, including human pose estimation, semantic segmentation, and object detection, suggesting that the HRNet is a stronger backbone for computer vision problems. All the codes are available at~{\url{this https URL}}.

1,278 citations

Posted Content
TL;DR: A simple modification is introduced to augment the high-resolution representation by aggregating the (upsampled) representations from all the parallel convolutions rather than only the representation from thehigh-resolution convolution, which leads to stronger representations, evidenced by superior results.
Abstract: High-resolution representation learning plays an essential role in many vision problems, e.g., pose estimation and semantic segmentation. The high-resolution network (HRNet)~\cite{SunXLW19}, recently developed for human pose estimation, maintains high-resolution representations through the whole process by connecting high-to-low resolution convolutions in \emph{parallel} and produces strong high-resolution representations by repeatedly conducting fusions across parallel convolutions. In this paper, we conduct a further study on high-resolution representations by introducing a simple yet effective modification and apply it to a wide range of vision tasks. We augment the high-resolution representation by aggregating the (upsampled) representations from all the parallel convolutions rather than only the representation from the high-resolution convolution as done in~\cite{SunXLW19}. This simple modification leads to stronger representations, evidenced by superior results. We show top results in semantic segmentation on Cityscapes, LIP, and PASCAL Context, and facial landmark detection on AFLW, COFW, $300$W, and WFLW. In addition, we build a multi-level representation from the high-resolution representation and apply it to the Faster R-CNN object detection framework and the extended frameworks. The proposed approach achieves superior results to existing single-model networks on COCO object detection. The code and models have been publicly available at \url{this https URL}.

512 citations

Proceedings ArticleDOI
Wayne Wu1, Chen Qian, Shuo Yang2, Quan Wang, Yici Cai1, Qiang Zhou1 
18 Jun 2018
TL;DR: Wu et al. as mentioned in this paper proposed a boundary-aware face alignment algorithm by utilizing boundary lines as the geometric structure of a human face to help facial landmark localisation, which achieves 3.49% mean error on 300-W Fullset, which outperforms state-of-the-art methods by a large margin.
Abstract: We present a novel boundary-aware face alignment algorithm by utilising boundary lines as the geometric structure of a human face to help facial landmark localisation. Unlike the conventional heatmap based method and regression based method, our approach derives face landmarks from boundary lines which remove the ambiguities in the landmark definition. Three questions are explored and answered by this work: 1. Why using boundary? 2. How to use boundary? 3. What is the relationship between boundary estimation and landmarks localisation? Our boundary-aware face alignment algorithm achieves 3.49% mean error on 300-W Fullset, which outperforms state-of-the-art methods by a large margin. Our method can also easily integrate information from other datasets. By utilising boundary information of 300-W dataset, our method achieves 3.92% mean error with 0.39% failure rate on COFW dataset, and 1.25% mean error on AFLW-Full dataset. Moreover, we propose a new dataset WFLW to unify training and testing across different factors, including poses, expressions, illuminations, makeups, occlusions, and blurriness. Dataset and model are publicly available at https://wywu.github.io/projects/LAB/LAB.html

371 citations

Proceedings ArticleDOI
18 Jun 2018
TL;DR: A new loss function, namely Wing loss, for robust facial landmark localisation with Convolutional Neural Networks (CNNs) is presented, and the superiority of the proposed method over the state-of-the-art approaches is proved.
Abstract: We present a new loss function, namely Wing loss, for robust facial landmark localisation with Convolutional Neural Networks (CNNs). We first compare and analyse different loss functions including L2, L1 and smooth L1. The analysis of these loss functions suggests that, for the training of a CNN-based localisation model, more attention should be paid to small and medium range errors. To this end, we design a piece-wise loss function. The new loss amplifies the impact of errors from the interval (-w, w) by switching from L1 loss to a modified logarithm function. To address the problem of under-representation of samples with large out-of-plane head rotations in the training set, we propose a simple but effective boosting strategy, referred to as pose-based data balancing. In particular, we deal with the data imbalance problem by duplicating the minority training samples and perturbing them by injecting random image rotation, bounding box translation and other data augmentation approaches. Last, the proposed approach is extended to create a two-stage framework for robust facial landmark localisation. The experimental results obtained on AFLW and 300W demonstrate the merits of the Wing loss function, and prove the superiority of the proposed method over the state-of-the-art approaches.

357 citations


Cites background or methods from "A Deep Regression Architecture with..."

  • ...The second one is the Two-stage Re-initialisation Deep Regression Network (TR-DRN) [39]....

    [...]

  • ...Also, our CNN-6/7 model is much faster than most existing DNNbased facial landmark localisation approaches such as TRDRN [39]....

    [...]

  • ...The speed of TR-DRN is 83 fps on an NVIDIA GeForce GTX Titan X card....

    [...]

  • ...The second one is the Two-stage Re-initialisation Deep Regression Network (TR-DRN) [41]....

    [...]

  • ...The result is better than CCL in terms accuracy but worse than DAC-CSR and TR-DRN....

    [...]

Proceedings ArticleDOI
15 Jun 2019
TL;DR: This paper proposes a simple but efficient part-regularized discriminative feature preserving method which enhances the perceptive ability of subtle discrepancies in vehicle re-identification and develops a novel framework to integrate part constrains with the global Re-ID modules by introducing an detection branch.
Abstract: Vehicle re-identification (Re-ID) has been attracting more interests in computer vision owing to its great contributions in urban surveillance and intelligent transportation. With the development of deep learning approaches, vehicle Re-ID still faces a near-duplicate challenge, which is to distinguish different instances with nearly identical appearances. Previous methods simply rely on the global visual features to handle this problem. In this paper, we proposed a simple but efficient part-regularized discriminative feature preserving method which enhances the perceptive ability of subtle discrepancies. We further develop a novel framework to integrate part constrains with the global Re-ID modules by introducing an detection branch. Our framework is trained end-to-end with combined local and global constrains. Specially, without the part-regularized local constrains in inference step, our Re-ID network outperforms the state-of-the-art method by a large margin on large benchmark datasets VehicleID and VeRi-776.

221 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a face detection framework that is capable of processing images extremely rapidly while achieving high detection rates is described. But the detection performance is limited to 15 frames per second.
Abstract: This paper describes a face detection framework that is capable of processing images extremely rapidly while achieving high detection rates. There are three key contributions. The first is the introduction of a new image representation called the “Integral Image” which allows the features used by our detector to be computed very quickly. The second is a simple and efficient classifier which is built using the AdaBoost learning algorithm (Freund and Schapire, 1995) to select a small number of critical visual features from a very large set of potential features. The third contribution is a method for combining classifiers in a “cascade” which allows background regions of the image to be quickly discarded while spending more computation on promising face-like regions. A set of experiments in the domain of face detection is presented. The system yields face detection performance comparable to the best previous systems (Sung and Poggio, 1998; Rowley et al., 1998; Schneiderman and Kanade, 2000; Roth et al., 2000). Implemented on a conventional desktop, face detection proceeds at 15 frames per second.

13,037 citations

Posted Content
TL;DR: Caffe as discussed by the authors is a BSD-licensed C++ library with Python and MATLAB bindings for training and deploying general-purpose convolutional neural networks and other deep models efficiently on commodity architectures.
Abstract: Caffe provides multimedia scientists and practitioners with a clean and modifiable framework for state-of-the-art deep learning algorithms and a collection of reference models. The framework is a BSD-licensed C++ library with Python and MATLAB bindings for training and deploying general-purpose convolutional neural networks and other deep models efficiently on commodity architectures. Caffe fits industry and internet-scale media needs by CUDA GPU computation, processing over 40 million images a day on a single K40 or Titan GPU ($\approx$ 2.5 ms per image). By separating model representation from actual implementation, Caffe allows experimentation and seamless switching among platforms for ease of development and deployment from prototyping machines to cloud environments. Caffe is maintained and developed by the Berkeley Vision and Learning Center (BVLC) with the help of an active community of contributors on GitHub. It powers ongoing research projects, large-scale industrial applications, and startup prototypes in vision, speech, and multimedia.

12,531 citations

Posted Content
TL;DR: This work proposes a Parametric Rectified Linear Unit (PReLU) that generalizes the traditional rectified unit and derives a robust initialization method that particularly considers the rectifier nonlinearities.
Abstract: Rectified activation units (rectifiers) are essential for state-of-the-art neural networks. In this work, we study rectifier neural networks for image classification from two aspects. First, we propose a Parametric Rectified Linear Unit (PReLU) that generalizes the traditional rectified unit. PReLU improves model fitting with nearly zero extra computational cost and little overfitting risk. Second, we derive a robust initialization method that particularly considers the rectifier nonlinearities. This method enables us to train extremely deep rectified models directly from scratch and to investigate deeper or wider network architectures. Based on our PReLU networks (PReLU-nets), we achieve 4.94% top-5 test error on the ImageNet 2012 classification dataset. This is a 26% relative improvement over the ILSVRC 2014 winner (GoogLeNet, 6.66%). To our knowledge, our result is the first to surpass human-level performance (5.1%, Russakovsky et al.) on this visual recognition challenge.

11,866 citations


"A Deep Regression Architecture with..." refers methods in this paper

  • ...PReLU [10] is adopted as the activation functions....

    [...]

Proceedings ArticleDOI
07 Dec 2015
TL;DR: In this paper, a Parametric Rectified Linear Unit (PReLU) was proposed to improve model fitting with nearly zero extra computational cost and little overfitting risk, which achieved a 4.94% top-5 test error on ImageNet 2012 classification dataset.
Abstract: Rectified activation units (rectifiers) are essential for state-of-the-art neural networks. In this work, we study rectifier neural networks for image classification from two aspects. First, we propose a Parametric Rectified Linear Unit (PReLU) that generalizes the traditional rectified unit. PReLU improves model fitting with nearly zero extra computational cost and little overfitting risk. Second, we derive a robust initialization method that particularly considers the rectifier nonlinearities. This method enables us to train extremely deep rectified models directly from scratch and to investigate deeper or wider network architectures. Based on the learnable activation and advanced initialization, we achieve 4.94% top-5 test error on the ImageNet 2012 classification dataset. This is a 26% relative improvement over the ILSVRC 2014 winner (GoogLeNet, 6.66% [33]). To our knowledge, our result is the first to surpass the reported human-level performance (5.1%, [26]) on this dataset.

11,732 citations

Proceedings ArticleDOI
03 Nov 2014
TL;DR: Caffe provides multimedia scientists and practitioners with a clean and modifiable framework for state-of-the-art deep learning algorithms and a collection of reference models for training and deploying general-purpose convolutional neural networks and other deep models efficiently on commodity architectures.
Abstract: Caffe provides multimedia scientists and practitioners with a clean and modifiable framework for state-of-the-art deep learning algorithms and a collection of reference models. The framework is a BSD-licensed C++ library with Python and MATLAB bindings for training and deploying general-purpose convolutional neural networks and other deep models efficiently on commodity architectures. Caffe fits industry and internet-scale media needs by CUDA GPU computation, processing over 40 million images a day on a single K40 or Titan GPU (approx 2 ms per image). By separating model representation from actual implementation, Caffe allows experimentation and seamless switching among platforms for ease of development and deployment from prototyping machines to cloud environments.Caffe is maintained and developed by the Berkeley Vision and Learning Center (BVLC) with the help of an active community of contributors on GitHub. It powers ongoing research projects, large-scale industrial applications, and startup prototypes in vision, speech, and multimedia.

10,161 citations


"A Deep Regression Architecture with..." refers methods in this paper

  • ...The above four models are all implemented on Caffe platform [15]....

    [...]