scispace - formally typeset
Open AccessJournal ArticleDOI

A default mode of brain function.

Reads0
Chats0
TLDR
A baseline state of the normal adult human brain in terms of the brain oxygen extraction fraction or OEF is identified, suggesting the existence of an organized, baseline default mode of brain function that is suspended during specific goal-directed behaviors.
Abstract
A baseline or control state is fundamental to the understanding of most complex systems. Defining a baseline state in the human brain, arguably our most complex system, poses a particular challenge. Many suspect that left unconstrained, its activity will vary unpredictably. Despite this prediction we identify a baseline state of the normal adult human brain in terms of the brain oxygen extraction fraction or OEF. The OEF is defined as the ratio of oxygen used by the brain to oxygen delivered by flowing blood and is remarkably uniform in the awake but resting state (e.g., lying quietly with eyes closed). Local deviations in the OEF represent the physiological basis of signals of changes in neuronal activity obtained with functional MRI during a wide variety of human behaviors. We used quantitative metabolic and circulatory measurements from positron-emission tomography to obtain the OEF regionally throughout the brain. Areas of activation were conspicuous by their absence. All significant deviations from the mean hemisphere OEF were increases, signifying deactivations, and resided almost exclusively in the visual system. Defining the baseline state of an area in this manner attaches meaning to a group of areas that consistently exhibit decreases from this baseline, during a wide variety of goal-directed behaviors monitored with positron-emission tomography and functional MRI. These decreases suggest the existence of an organized, baseline default mode of brain function that is suspended during specific goal-directed behaviors.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Complex brain networks: graph theoretical analysis of structural and functional systems

TL;DR: This article reviews studies investigating complex brain networks in diverse experimental modalities and provides an accessible introduction to the basic principles of graph theory and highlights the technical challenges and key questions to be addressed by future developments in this rapidly moving field.
Journal ArticleDOI

The Brain's Default Network Anatomy, Function, and Relevance to Disease

TL;DR: Past observations are synthesized to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment, and for understanding mental disorders including autism, schizophrenia, and Alzheimer's disease.
Journal ArticleDOI

The human brain is intrinsically organized into dynamic, anticorrelated functional networks

TL;DR: It is suggested that both task-driven neuronal responses and behavior are reflections of this dynamic, ongoing, functional organization of the brain, featuring the presence of anticorrelated networks in the absence of overt task performance.
Journal ArticleDOI

The organization of the human cerebral cortex estimated by intrinsic functional connectivity

TL;DR: In this paper, the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI data from 1,000 subjects and a clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex.
Journal ArticleDOI

Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging.

TL;DR: Recent studies examining spontaneous fluctuations in the blood oxygen level dependent (BOLD) signal of functional magnetic resonance imaging as a potentially important and revealing manifestation of spontaneous neuronal activity are reviewed.
References
More filters
Journal ArticleDOI

Cognitive and emotional influences in anterior cingulate cortex

TL;DR: Various findings are reviewed in relation to the idea that ACC is a part of a circuit involved in a form of attention that serves to regulate both cognitive and emotional processing, and how the success of this regulation in controlling responses might be correlated with cingulate size.
Journal ArticleDOI

Brain magnetic resonance imaging with contrast dependent on blood oxygenation

TL;DR: In this paper, the authors demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level, which can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions.
Journal ArticleDOI

Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation.

TL;DR: In this paper, a series of images were acquired continuously with the same imaging pulse sequence (either gradient echo or spin-echo inversion recovery) during task activation, and a significant increase in signal intensity (paired t test; P less than 0.001) of 1.8% +/- 0.9% was observed in the primary visual cortex (V1) of seven normal volunteers.
Journal ArticleDOI

Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging

TL;DR: It is reported that visual stimulation produces an easily detectable (5-20%) transient increase in the intensity of water proton magnetic resonance signals in human primary visual cortex in gradient echo images at 4-T magnetic-field strength.
Related Papers (5)