scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications

01 Aug 2011-Journal of Manufacturing Processes (Elsevier)-Vol. 13, Iss: 2, pp 160-170
TL;DR: In this paper, a design process for creating periodic cellular structures specifically targeted for biomedical applications is discussed, where electron beam melting is used to fabricate the parts and compared with design parameters.
About: This article is published in Journal of Manufacturing Processes.The article was published on 2011-08-01. It has received 307 citations till now. The article focuses on the topics: Direct metal laser sintering.
Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out in this paper, where the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed.
Abstract: Freedom of design, mass customisation, waste minimisation and the ability to manufacture complex structures, as well as fast prototyping, are the main benefits of additive manufacturing (AM) or 3D printing. A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out. In particular, the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed. The current state of materials development, including metal alloys, polymer composites, ceramics and concrete, was presented. In addition, this paper discussed the main processing challenges with void formation, anisotropic behaviour, the limitation of computer design and layer-by-layer appearance. Overall, this paper gives an overview of 3D printing, including a survey on its benefits and drawbacks as a benchmark for future research and development.

4,159 citations

Journal ArticleDOI
TL;DR: In the case of aircraft components, AM technology enables low-volume manufacturing, easy integration of design changes and, at least as importantly, piece part reductions to greatly simplify product assembly.
Abstract: The past few decades have seen substantial growth in Additive Manufacturing (AM) technologies. However, this growth has mainly been process-driven. The evolution of engineering design to take advantage of the possibilities afforded by AM and to manage the constraints associated with the technology has lagged behind. This paper presents the major opportunities, constraints, and economic considerations for Design for Additive Manufacturing. It explores issues related to design and redesign for direct and indirect AM production. It also highlights key industrial applications, outlines future challenges, and identifies promising directions for research and the exploitation of AM's full potential in industry.

1,132 citations

Book ChapterDOI
01 Nov 2015
TL;DR: In this article, the capabilities of additive manufacturing technologies provide an opportunity to rethink DFM to take advantage of the unique capabilities of these technologies, and several companies are now using AM technologies for production manufacturing.
Abstract: Design for manufacture and assembly (DFM) has typically meant that designers should tailor their designs to eliminate manufacturing difficulties and minimize manufacturing, assembly, and logistics costs. However, the capabilities of additive manufacturing technologies provide an opportunity to rethink DFM to take advantage of the unique capabilities of these technologies. As mentioned in Chap. 16, several companies are now using AM technologies for production manufacturing. For example, Siemens, Phonak, Widex, and the other hearing aid manufacturers use selective laser sintering and stereolithography machines to produce hearing aid shells; Align Technology uses stereolithography to fabricate molds for producing clear dental braces (“aligners”); and Boeing and its suppliers use polymer powder bed fusion (PBF) to produce ducts and similar parts for F-17 fighter jets. For hearing aids and dental aligners, AM machines enable manufacturing of tens to hundreds of thousands of parts, where each part is uniquely customized based upon person-specific geometric data. In the case of aircraft components, AM technology enables low-volume manufacturing, easy integration of design changes and, at least as importantly, piece part reductions to greatly simplify product assembly.

631 citations

Journal ArticleDOI
TL;DR: In this article, a unified equation to compute the energy density is proposed to compare works performed with distinct equipment and experimental conditions, covering the major process parameters: power, travel speed, heat source dimension, hatch distance, deposited layer thickness and material grain size.

369 citations


Cites background from "A design for the additive manufactu..."

  • ...The presence of porosity in parts fabricated by additive manufacturing may be intentional, when it is aimed to obtain porous structures [100,101], or unintentional, when the process is not controlled and undesired pores remain in the part [102]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the effect of build orientation selection and heat treatment on the mechanical properties of lattice structures with different geometries and their influence on mechanical properties was investigated, showing a significant decrease in mechanical strength for samples that are built diagonally and a transformation of the microstructure after a HIP (hot isostatic pressing) treatment, resulting in a lower maximum strength, but higher ductility.
Abstract: The metal additive manufacturing industry is rising and so is the interest in new lattice structures with unique mechanical properties. Many studies have already investigated lattice structures with different geometries and their influence on mechanical properties, but little is known about the effect of specific processing characteristics that are inherent to metal additive manufacturing. Therefore this study investigates the effect of two crucial steps in the manufacturing process: the build orientation selection and heat treatment. In total the microstructure and static mechanical properties of five different orientations and three heat treatment conditions were evaluated using Ti6Al4V diamond like lattice structures. The results show a significant decrease in mechanical strength for samples that are built diagonally and a transformation of the microstructure after a HIP (hot isostatic pressing) treatment, resulting in a lower maximum strength, but higher ductility. In general, horizontal struts should be avoided during manufacturing, unless the applied load after manufacturing can be properly supported by other struts. Both a stress relief heat treatment and a HIP treatment can be used in statically loaded applications, whereas a HIP treatment is believed to be beneficial for dynamically loaded applications. This study enables an appropriate selection of build orientation and heat treatment of lattice structures for different applications.

367 citations

References
More filters
Book
01 Aug 1988
TL;DR: The linear elasticity of anisotropic cellular solids is studied in this article. But the authors focus on the design of sandwich panels with foam cores and do not consider the properties of the materials.
Abstract: 1. Introduction 2. The structure of cellular solids 3. Material properties 4. The mechanics of honeycombs 5. The mechanics of foams: basic results 6. The mechanics of foams refinements 7. Thermal, electrical and acoustic properties of foams 8. Energy absorption in cellular materials 9. The design of sandwich panels with foam cores 10. Wood 11. Cancellous bone 12. Cork 13. Sources, suppliers and property data Appendix: the linear-elasticity of anisotropic cellular solids.

8,946 citations


"A design for the additive manufactu..." refers background in this paper

  • ...Cellular structures have good energy absorption, thermal, and acoustic insulation properties [13]....

    [...]

Book
01 Jan 2000
TL;DR: In this paper, the authors present a model for making metal foams characterisation methods and properties of metal foam, and a constitutive model for metal foam design for Creep with Metal Foams Sandwich Structures Energy Management: Packaging and Blast Protection Sound Absorption and Vibration Suppression Thermal Management and Heat Transfer Electrical Properties of metal Foams Cutting, Finishing and Joining Cost Estimation and Viability Case Studies Suppliers of Metal Foam Web Sites Index
Abstract: Introduction Making Metal Foams Characterization Methods Properties of Metal Foams Design Analysis for Material Selection Design Formulae for Simple Structures A Constitutive Model for Metal Foams Design for Creep with Metal Foams Sandwich Structures Energy Management: Packaging and Blast Protection Sound Absorption and Vibration Suppression Thermal Management and Heat Transfer Electrical Properties of Metal Foams Cutting, Finishing and Joining Cost Estimation and Viability Case Studies Suppliers of Metal Foams Web Sites Index .

2,527 citations


"A design for the additive manufactu..." refers background in this paper

  • ...The stiffness and strength of the octet-truss latticematerial compared well with the corresponding properties of metallic foams [25,26]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the mechanical properties of two-dimensional cellular materials, or honeycombs, are analyzed and compared with experiments, in terms of bending, elastic buckling and plastic collapse of the beams that make up the cell walls.
Abstract: The mechanical properties (linear and nonlinear elastic and plastic) of two-dimensional cellular materials, or honeycombs, are analysed and compared with experiments. The properties are well described in terms of the bending, elastic buckling and plastic collapse of the beams that make up the cell walls.

1,567 citations


"A design for the additive manufactu..." refers background in this paper

  • ...Anisotropy can also be introduced in the design as per the realtime requirements [14]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the effective mechanical properties of the octet-truss lattice structured material have been investigated both experimentally and theoretically, and the intervention of elastic buckling of the struts is also analysed in an approximate manner.
Abstract: The effective mechanical properties of the octet-truss lattice structured material have been investigated both experimentally and theoretically. Analytical and FE calculations of the elastic properties and plastic yielding collapse surfaces are reported. The intervention of elastic buckling of the struts is also analysed in an approximate manner. Good agreement is found between the predictions of the strength and experimental observations from tests on the octet-truss material made from a casting aluminium alloy. Moreover, the strength and stiffness of the octet-truss material are stretching-dominated and compare favourably with the corresponding properties of metallic foams. Thus, the octet-truss lattice material can be considered as a promising alternative to metallic foams in lightweight structures.

1,260 citations


"A design for the additive manufactu..." refers background in this paper

  • ...The stiffness and strength of the octet-truss latticematerial compared well with the corresponding properties of metallic foams [25,26]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the current state of SLS in terms of materials and lasers is surveyed and investigated experimentally and by numerical simulation in order to get insight into laser-material interaction and to control this interaction properly.
Abstract: Selective laser sintering (SLS) is one of the most rapidly growing rapid prototyping techniques (RPT). This is mainly due to its suitability to process almost any material: polymers, metals, ceramics (including foundry sand) and many types of composites. The material should be supplied as powder that may occasionally contain a sacrificial polymer binder that has to be removed (debinded) afterwards. The interaction between the laser beam and the powder material used in SLS is one of the dominant phenomena that defines the feasibility and quality of any SLS process. This paper surveys the current state of SLS in terms of materials and lasers. It describes investigations carried out experimentally and by numerical simulation in order to get insight into laser‐material interaction and to control this interaction properly.

622 citations