scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine

TL;DR: Investigation of the effects of a diet high in RS on luminal microbiota composition, luminal SCFA concentrations, and the expression of host genes involved in SCFA uptake, SCFA signaling, and satiety regulation in mucosal tissue obtained from small intestine, cecum, and colon shows that RS modulates microbiota composition
Abstract: Resistant starch (RS) is highly fermentable by microbiota in the colon, resulting in the production of SCFAs. RS is thought to mediate a large proportion of its health benefits, including increased satiety, through the actions of SCFAs. The aim of this study was to investigate the effects of a diet high in RS on luminal microbiota composition, luminal SCFA concentrations, and the expression of host genes involved in SCFA uptake, SCFA signaling, and satiety regulation in mucosal tissue obtained from small intestine, cecum, and colon. Twenty adult female pigs were either assigned to a digestible starch (DS) diet or a diet high in RS (34%) for a period of 2 wk. After the intervention, luminal content and mucosal scrapings were obtained for detailed molecular analysis. RS was completely degraded in the cecum. In both the cecum and colon, differences in microbiota composition were observed between DS- and RS-fed pigs. In the colon these included the stimulation of the healthy gut-associated butyrate-producing Faecalibacterium prausnitzii, whereas potentially pathogenic members of the Gammaproteobacteria, including Escherichia coli and Pseudomonas spp., were reduced in relative abundance. Cecal and colonic SCFA concentrations were significantly greater in RS-fed pigs, and cecal gene expression of monocarboxylate transporter 1 (SLC16A1) and glucagon (GCG) was induced by RS. In conclusion, our data show that RS modulates microbiota composition, SCFA concentrations, and host gene expression in pig intestine. Combined, our data provide an enhanced understanding of the interaction between diet, microbiota, and host.
Citations
More filters
Journal ArticleDOI
TL;DR: This review summarizes the role of SCFAs in host energy metabolism, starting from the production by the gut microbiota to the uptake by the host and ending with the effects on host metabolism.

3,040 citations

Journal ArticleDOI
TL;DR: An overview of microbial SCFAs production and their effects on the intestinal mucosa with specific emphasis on their relevance for Inflammatory Bowel Diseases is presented and the therapeutic potential ofSCFAs for IBD is discussed.
Abstract: Ulcerative colitis (UC) and Crohn's disease (CD), collectively known as Inflammatory Bowel Diseases (IBD), are caused by a complex interplay between genetic, immunologic, microbial and environmental factors. Dysbiosis of the gut microbiome is increasingly considered to be causatively related to IBD and is strongly affected by components of a Western life style. Bacteria that ferment fibers and produce short chain fatty acids (SCFAs) are typically reduced in mucosa and feces of patients with IBD, as compared to healthy individuals. SCFAs, such as acetate, propionate and butyrate, are important metabolites in maintaining intestinal homeostasis. Several studies have indeed shown that fecal SCFAs levels are reduced in active IBD. SCFAs are an important fuel for intestinal epithelial cells and are known to strengthen the gut barrier function. Recent findings, however, show that SCFAs, and in particular butyrate, also have important immunomodulatory functions. Absorption of SCFAs is facilitated by substrate transporters like MCT1 and SMCT1 to promote cellular metabolism. Moreover, SCFAs may signal through cell surface G-protein coupled receptors (GPCRs), like GPR41, GPR43, and GPR109A, to activate signaling cascades that control immune functions. Transgenic mouse models support the key role of these GPCRs in controlling intestinal inflammation. Here, we present an overview of microbial SCFAs production and their effects on the intestinal mucosa with specific emphasis on their relevance for IBD. Moreover, we discuss the therapeutic potential of SCFAs for IBD, either applied directly or by stimulating SCFAs-producing bacteria through pre- or probiotic approaches.

1,732 citations


Cites background from "A diet high in resistant starch mod..."

  • ...Nevertheless, the analysis of SCFAs in fecal samples is used as an approximation of gut levels, since excreted SCFA concentrations are associated with RS enriched diets (substrates of SCFAsproducing bacteria), inferring the relationship between intestinal SCFAs production and fecal levels (40, 41)....

    [...]

Journal ArticleDOI
TL;DR: The present knowledge on the properties of butyrate, especially its potential effects and mechanisms involved in intestinal health and obesity, are summarized.

542 citations

Journal ArticleDOI
TL;DR: A global framework needs to be developed to better understand how dietary fibers can be used to obtain predicted changes in microbiota composition for improved health and this will require a multi-disciplinary effort that includes biological scientists, clinicians, and carbohydrate specialists.

408 citations

Journal ArticleDOI
06 Nov 2017
TL;DR: The present review summarizes the evidences related to the age-associated changes in intestinal microbiota and vice-versa, mechanisms involved in this bi-directional relationship, and the prospective for development of microbiota-based interventions such as probiotics for healthy aging.
Abstract: The development of human gut microbiota begins as soon as the neonate leaves the protective environment of the uterus (or maybe in-utero) and is exposed to innumerable microorganisms from the mother as well as the surrounding environment. Concurrently, the host responses to these microbes during early life manifest during the development of an otherwise hitherto immature immune system. The human gut microbiome, which comprises an extremely diverse and complex community of microorganisms inhabiting the intestinal tract, keeps on fluctuating during different stages of life. While these deviations are largely natural, inevitable and benign, recent studies show that unsolicited perturbations in gut microbiota configuration could have strong impact on several features of host health and disease. Our microbiota undergoes the most prominent deviations during infancy and old age and, interestingly, our immune health is also in its weakest and most unstable state during these two critical stages of life, indicating that our microbiota and health develop and age hand-in-hand. However, the mechanisms underlying these interactions are only now beginning to be revealed. The present review summarizes the evidences related to the age-associated changes in intestinal microbiota and vice-versa, mechanisms involved in this bi-directional relationship, and the prospective for development of microbiota-based interventions such as probiotics for healthy aging.

401 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a different approach to problems of multiple significance testing is presented, which calls for controlling the expected proportion of falsely rejected hypotheses -the false discovery rate, which is equivalent to the FWER when all hypotheses are true but is smaller otherwise.
Abstract: SUMMARY The common approach to the multiplicity problem calls for controlling the familywise error rate (FWER). This approach, though, has faults, and we point out a few. A different approach to problems of multiple significance testing is presented. It calls for controlling the expected proportion of falsely rejected hypotheses -the false discovery rate. This error rate is equivalent to the FWER when all hypotheses are true but is smaller otherwise. Therefore, in problems where the control of the false discovery rate rather than that of the FWER is desired, there is potential for a gain in power. A simple sequential Bonferronitype procedure is proved to control the false discovery rate for independent test statistics, and a simulation study shows that the gain in power is substantial. The use of the new procedure and the appropriateness of the criterion are illustrated with examples.

83,420 citations

Journal ArticleDOI
TL;DR: Analysis of the genomic DNA from a bacterial biofilm grown under aerobic conditions suggests that sulfate-reducing bacteria, despite their anaerobicity, were present in this environment.
Abstract: We describe a new molecular approach to analyzing the genetic diversity of complex microbial populations. This technique is based on the separation of polymerase chain reaction-amplified fragments of genes coding for 16S rRNA, all the same length, by denaturing gradient gel electrophoresis (DGGE). DGGE analysis of different microbial communities demonstrated the presence of up to 10 distinguishable bands in the separation pattern, which were most likely derived from as many different species constituting these populations, and thereby generated a DGGE profile of the populations. We showed that it is possible to identify constituents which represent only 1% of the total population. With an oligonucleotide probe specific for the V3 region of 16S rRNA of sulfate-reducing bacteria, particular DNA fragments from some of the microbial populations could be identified by hybridization analysis. Analysis of the genomic DNA from a bacterial biofilm grown under aerobic conditions suggests that sulfate-reducing bacteria, despite their anaerobicity, were present in this environment. The results we obtained demonstrate that this technique will contribute to our understanding of the genetic diversity of uncharacterized microbial populations.

11,380 citations

Journal ArticleDOI
04 Mar 2010-Nature
TL;DR: The Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence, from faecal samples of 124 European individuals are described, indicating that the entire cohort harbours between 1,000 and 1,150 prevalent bacterial species and each individual at least 160 such species.
Abstract: To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence, from faecal samples of 124 European individuals. The gene set, ~150 times larger than the human gene complement, contains an overwhelming majority of the prevalent (more frequent) microbial genes of the cohort and probably includes a large proportion of the prevalent human intestinal microbial genes. The genes are largely shared among individuals of the cohort. Over 99% of the genes are bacterial, indicating that the entire cohort harbours between 1,000 and 1,150 prevalent bacterial species and each individual at least 160 such species, which are also largely shared. We define and describe the minimal gut metagenome and the minimal gut bacterial genome in terms of functions present in all individuals and most bacteria, respectively

9,268 citations

Journal ArticleDOI
20 Jan 2010-JAMA
TL;DR: The increases in the prevalence of obesity previously observed do not appear to be continuing at the same rate over the past 10 years, particularly for women and possibly for men.
Abstract: Results In 2007-2008, the age-adjusted prevalence of obesity was 33.8% (95% confidence interval [CI], 31.6%-36.0%) overall, 32.2% (95% CI, 29.5%-35.0%) among men, and 35.5% (95% CI, 33.2%-37.7%) among women. The corresponding prevalence estimates for overweight and obesity combined (BMI 25) were 68.0% (95% CI, 66.3%-69.8%), 72.3% (95% CI, 70.4%-74.1%), and 64.1% (95% CI, 61.3%66.9%). Obesity prevalence varied by age group and by racial and ethnic group for both men and women. Over the 10-year period, obesity showed no significant trend among women (adjusted odds ratio [AOR] for 2007-2008 vs 1999-2000, 1.12 [95% CI, 0.89-1.32]). For men, there was a significant linear trend (AOR for 2007-2008 vs 1999-2000, 1.32 [95% CI, 1.12-1.58]); however, the 3 most recent data points did not differ significantly from each other.

7,730 citations

Journal ArticleDOI
01 Oct 1986-Ecology
TL;DR: In this article, a new multivariate analysis technique, called canonical correspondence analysis (CCA), was developed to relate community composition to known variation in the environment, where ordination axes are chosen in the light of known environmental variables by imposing the extra restriction that the axes be linear combinations of environmental variables.
Abstract: A new multivariate analysis technique, developed to relate community composition to known variation in the environment, is described. The technique is an extension of correspondence analysis (reciprocal averaging), a popular ordination technique that extracts continuous axes of variation from species occurrence or abundance data. Such ordination axes are typically interpreted with the help of external knowledge and data on environmental variables; this two—step approach (ordination followed by environmental gradient identification) is termed indirect gradient analysis. In the new technique, called canonical correspondence analysis, ordination axes are chosen in the light of known environmental variables by imposing the extra restriction that the axes be linear combinations of environmental variables. In this way community variation can be directly related to environmental variation. The environmental variables may be quantitative or nominal. As many axes can be extracted as there are environmental variables. The method of detrending can be incorporated in the technique to remove arch effects. (Detrended) canonical correspondence analysis is an efficient ordination technique when species have bell—shaped response curves or surfaces with respect to environmental gradients, and is therefore more appropriate for analyzing data on community composition and environmental variables than canonical correlation analysis. The new technique leads to an ordination diagram in which points represent species and sites, and vectors represent environmental variables. Such a diagram shows the patterns of variation in community composition that can be explained best by the environmental variables and also visualizes approximately the "centers" of the species distributions along each of the environmental variables. Such diagrams effectively summarized relationships between community and environment for data sets on hunting spiders, dyke vegetation, and algae along a pollution gradient.

5,689 citations