scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A direct formulation and numerical solution of the general transient elastodynamic problem. II

01 Apr 1968-Journal of Mathematical Analysis and Applications (Academic Press)-Vol. 22, Iss: 1, pp 341-355
About: This article is published in Journal of Mathematical Analysis and Applications.The article was published on 1968-04-01 and is currently open access. It has received 461 citations till now. The article focuses on the topics: Transient (oscillation).
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present the techniques, advances, problems and likely future developments in numerical modelling for rock mechanics and discuss the value that is obtained from the modelling, especially the enhanced understanding of those mechanisms initiated by engineering perturbations.

976 citations

Journal ArticleDOI
TL;DR: The finite element method is now recognized as a general approximation process which is applicable to a variety of engineering problems and boundary solution procedures have been introduced as an independent alternative which at times is more economical and possesses certain merits as mentioned in this paper.
Abstract: The finite element method is now recognized as a general approximation process which is applicable to a variety of engineering problems—structural mechanics being only one of these. Boundary solution procedures have been introduced as an independent alternative which at times is more economical and possesses certain merits. In this survey of the field we show how such procedures can be utilized in conventional FEM context.

711 citations

Journal ArticleDOI
TL;DR: In this paper, the elastic body is divided into subregions, and the surface and interfaces are represented by quadrilateral and triangular elements with quadratic variation of geometry.
Abstract: The field equations of three-dimensional elastostatics are transformed to boundary integral equations. The elastic body is divided into subregions, and the surface and interfaces are represented by quadrilateral and triangular elements with quadratic variation of geometry and linear, quadratic or cubic variation of displacement and traction with respect to intrinsic co-ordinates. The integral equation is discretized for each subregion, and a system of banded form obtained. For the integration of kernel-shape function products, Gaussian quadrature formulae are chosen according to upper bounds for error in terms of derivatives of the integrands. Use of the integral formulation is illustrated by the analysis of a prestressed concrete nuclear reactor pressure vessel.

670 citations

Journal ArticleDOI
TL;DR: In this article, a boundary element method for the analysis of free vibrations in solid mechanics is developed using a non-standard boundary integral approach, utilizing the statical fundamental solution and employing a special class of coordinate functions, the algebraic eigenvalue problem results.

668 citations

References
More filters
Book
01 Jan 1892
TL;DR: Webb's work on elasticity as mentioned in this paper is the outcome of a suggestion made to me some years ago by Mr R. R. Webb that I should assist him in the preparation of a work on Elasticity.
Abstract: The present treatise is the outcome of a suggestion made to me some years ago by Mr R. R. Webb that I should assist him in the preparation of a work on Elasticity. He has unfortunately found himself unable to proceed with it, and I have therefore been obliged to take upon myself the whole of the work and the whole of the responsibility. I wish to acknowledge at the outset the debt that I owe to him as a teacher of the subject, as well as my obligation for many valuable suggestions chiefly with reference to the scope and plan of the work, and to express my regret that other engagements have prevented him from sharing more actively in its production. The division of the subject adopted is that originally made by Clebsch in his classical treatise, where a clear distinction is ill-awn between exact solutions for bodies all whose dimensions are finite and approximate solutions for bodies some of whose dimensions can be regarded as infinitesimal. The present volume contains the general mathematical theory of the elastic properties of the first class of bodies, and I propose to treat the second class in another volume. At Mr Webb's suggestion, the exposition of the theory is preceded by an historical sketch of its origin and development. Anything like an exhaustive history has been rendered unnecessary by the work of the late Dr Todhunter as edited by Prof Karl Pearson, but it is hoped that the brief account given will at once facilitate the comprehension of the theory and add to its interest. Readers of the historical work referred to will appreciate the difficulty of giving within a reasonable compass a complete account of all the valuable researches that have been made; and the aim of this book is rather to present a connected account of the theory in its present state, and an indication of the way in which that state has been attained, avoiding on the one hand merely analytical developments, and on the other purely technical details.

7,269 citations

BookDOI
01 Jan 1977

4,382 citations

Book
01 Jan 1929

2,246 citations

Journal ArticleDOI
TL;DR: In this paper, a vector boundary formula relating the boundary values of displacement and traction for the general equilibrated stress state is derived, which is used to generate integral equations for the solution of the traction, displacement, and mixed boundary value problems of plane elasticity.
Abstract: The analogy between potential theory and classical elasticity suggests an extension of the powerful method of integral equations to the boundary value problems of elasticity. A vector boundary formula relating the boundary values of displacement and traction for the general equilibrated stress state is derived. The vector formula itself is shown to generate integral equations for the solution of the traction, displacement, and mixed boundary value problems of plane elasticity. However, an outstanding conceptual advantage of the formulation is that it is not restricted to two dimensions. This distinguishes it from the methods of Muskhelishvili and most other familiar integral equation methods. The presented approach is a real variable one and is applicable, without inherent restriction, to multiply connected domains. More precisely, no difficulty of the order of determining a mapping function is present and unwanted Volterra type dislocation solutions are eliminated a priori. An indication of techniques necessary to effect numerical solution of the resulting integral equations is presented with numerical data from a set of test problems.

699 citations