scispace - formally typeset
Search or ask a question
Journal Article

A DNA test to sex most birds.

TL;DR: In this paper, a test based on two conserved CHD (chromo-helicase-DNA-binding) genes that are located on the avian sex chromosomes of all birds, with the possible exception of the ratites (ostriches, etc.).
About: This article is published in Molecular Oncology.The article was published on 1998-07-30 and is currently open access. It has received 2554 citations till now. The article focuses on the topics: W chromosome & Z chromosome.
Citations
More filters
Journal ArticleDOI
TL;DR: The R package MCMCglmm implements Markov chain Monte Carlo methods for generalized linear mixed models, which provide a flexible framework for modeling a range of data, although with non-Gaussian response variables the likelihood cannot be obtained in closed form.
Abstract: Generalized linear mixed models provide a flexible framework for modeling a range of data, although with non-Gaussian response variables the likelihood cannot be obtained in closed form. Markov chain Monte Carlo methods solve this problem by sampling from a series of simpler conditional distributions that can be evaluated. The R package MCMCglmm implements such an algorithm for a range of model fitting problems. More than one response variable can be analyzed simultaneously, and these variables are allowed to follow Gaussian, Poisson, multi(bi)nominal, exponential, zero-inflated and censored distributions. A range of variance structures are permitted for the random effects, including interactions with categorical or continuous variables (i.e., random regression), and more complicated variance structures that arise through shared ancestry, either through a pedigree or through a phylogeny. Missing values are permitted in the response variable(s) and data can be known up to some level of measurement error as in meta-analysis. All simu- lation is done in C/ C++ using the CSparse library for sparse linear systems.

4,156 citations

Journal ArticleDOI
TL;DR: A universal method for molecular sexing of non-ratite birds which is based on the detection of a constant size difference between CHD1W andCHD1Z introns is described, successfully sexing 47 of the species.
Abstract: Molecular sexing is an attractive means to determine the sex of sexually monomorphic birds, e.g. chicks of most species. A universal approach for molecular sexing of birds would require that a conserved W chromosome-linked sequence could be analysed, but no single gene has previously been known from any avian W chromosome. The recent discovery of the CHD1W gene, apparently W-linked in all non-ratite birds, has opened new possibilities in this direction, although there is a problem in that the gene also exists in a very similar copy on the Z chromosome (CHD1Z). Here we describe a universal method for molecular sexing of non-ratite birds which is based on the detection of a constant size difference between CHD1W and CHD1Z introns. Using highly conserved primers flanking the intron, PCR amplification and agarose electrophoresis, females are characterised by displaying one (CHD1W) or two fragments (CHD1W and CHD1Z), while males only show one fragment (CHD1Z) clearly different in size from the female-specific CHD1W fragment. With one particular pair of primers (2550F and 2718R) we applied this test to 50 bird species from 11 orders throughout the avian phylogeny, successfully sexing 47 of the species. Using an alternative pair of primers, the three failing species could be reliably sexed. This means that a simple, rapid and cheap universal system for molecular sexing of non-ratite birds is now available.

1,644 citations

Journal ArticleDOI
01 Dec 2002-Ecology
TL;DR: The nest survival model now available in the program MARK is introduced and its use is demonstrated on a nesting study of Mountain Plovers (Charadrius montanus Townsend) in Montana, USA.
Abstract: Estimation of avian nest survival has traditionally involved simple measures of apparent nest survival or Mayfield constant-nest-survival models. However, these methods do not allow researchers to build models that rigorously assess the importance of a wide range of biological factors that affect nest survival. Models that incorporate greater detail, such as temporal variation in nest survival and covariates representative of individual nests represent a substantial improvement over traditional estimation methods. In an attempt to improve nest survival estimation procedures, we introduce the nest survival model now available in the program MARK and demonstrate its use on a nesting study of Mountain Plovers (Charadrius montanus Townsend) in Montana, USA. We modeled the daily survival of Mountain Plover nests as a function of the sex of the incubating adult, nest age, year, linear and quadratic time trends, and two weather covariates (maximum daily temperature and daily precipitation) during a six-year stud...

884 citations

Journal ArticleDOI
Guojie Zhang1, Guojie Zhang2, Cai Li2, Qiye Li2, Bo Li2, Denis M. Larkin3, Chul Hee Lee4, Jay F. Storz5, Agostinho Antunes6, Matthew J. Greenwold7, Robert W. Meredith8, Anders Ödeen9, Jie Cui10, Qi Zhou11, Luohao Xu2, Hailin Pan2, Zongji Wang12, Lijun Jin2, Pei Zhang2, Haofu Hu2, Wei Yang2, Jiang Hu2, Jin Xiao2, Zhikai Yang2, Yang Liu2, Qiaolin Xie2, Hao Yu2, Jinmin Lian2, Ping Wen2, Fang Zhang2, Hui Li2, Yongli Zeng2, Zijun Xiong2, Shiping Liu12, Long Zhou2, Zhiyong Huang2, Na An2, Jie Wang13, Qiumei Zheng2, Yingqi Xiong2, Guangbiao Wang2, Bo Wang2, Jingjing Wang2, Yu Fan14, Rute R. da Fonseca1, Alonzo Alfaro-Núñez1, Mikkel Schubert1, Ludovic Orlando1, Tobias Mourier1, Jason T. Howard15, Ganeshkumar Ganapathy15, Andreas R. Pfenning15, Osceola Whitney15, Miriam V. Rivas15, Erina Hara15, Julia Smith15, Marta Farré3, Jitendra Narayan16, Gancho T. Slavov16, Michael N Romanov17, Rui Borges6, João Paulo Machado6, Imran Khan6, Mark S. Springer18, John Gatesy18, Federico G. Hoffmann19, Juan C. Opazo20, Olle Håstad21, Roger H. Sawyer7, Heebal Kim4, Kyu-Won Kim4, Hyeon Jeong Kim4, Seoae Cho4, Ning Li22, Yinhua Huang22, Michael William Bruford23, Xiangjiang Zhan13, Andrew Dixon, Mads F. Bertelsen24, Elizabeth P. Derryberry25, Wesley C. Warren26, Richard K. Wilson26, Shengbin Li27, David A. Ray19, Richard E. Green28, Stephen J. O'Brien29, Darren K. Griffin17, Warren E. Johnson30, David Haussler28, Oliver A. Ryder, Eske Willerslev1, Gary R. Graves31, Per Alström21, Jon Fjeldså32, David P. Mindell33, Scott V. Edwards34, Edward L. Braun35, Carsten Rahbek32, David W. Burt36, Peter Houde37, Yong Zhang2, Huanming Yang38, Jian Wang2, Erich D. Jarvis15, M. Thomas P. Gilbert1, M. Thomas P. Gilbert39, Jun Wang 
12 Dec 2014-Science
TL;DR: This work explored bird macroevolution using full genomes from 48 avian species representing all major extant clades to reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.
Abstract: Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.

872 citations

Journal ArticleDOI
TL;DR: It is concluded that consistent individual variation in open field behaviour exists in individuals from the wild, and this behavioural variation is heritable and poses the question of how this variation is maintained under natural conditions.

760 citations

References
More filters
Journal ArticleDOI
TL;DR: A universal method for molecular sexing of non-ratite birds which is based on the detection of a constant size difference between CHD1W andCHD1Z introns is described, successfully sexing 47 of the species.
Abstract: Molecular sexing is an attractive means to determine the sex of sexually monomorphic birds, e.g. chicks of most species. A universal approach for molecular sexing of birds would require that a conserved W chromosome-linked sequence could be analysed, but no single gene has previously been known from any avian W chromosome. The recent discovery of the CHD1W gene, apparently W-linked in all non-ratite birds, has opened new possibilities in this direction, although there is a problem in that the gene also exists in a very similar copy on the Z chromosome (CHD1Z). Here we describe a universal method for molecular sexing of non-ratite birds which is based on the detection of a constant size difference between CHD1W and CHD1Z introns. Using highly conserved primers flanking the intron, PCR amplification and agarose electrophoresis, females are characterised by displaying one (CHD1W) or two fragments (CHD1W and CHD1Z), while males only show one fragment (CHD1Z) clearly different in size from the female-specific CHD1W fragment. With one particular pair of primers (2550F and 2718R) we applied this test to 50 bird species from 11 orders throughout the avian phylogeny, successfully sexing 47 of the species. Using an alternative pair of primers, the three failing species could be reliably sexed. This means that a simple, rapid and cheap universal system for molecular sexing of non-ratite birds is now available.

1,644 citations

Journal ArticleDOI
01 Dec 2002-Ecology
TL;DR: The nest survival model now available in the program MARK is introduced and its use is demonstrated on a nesting study of Mountain Plovers (Charadrius montanus Townsend) in Montana, USA.
Abstract: Estimation of avian nest survival has traditionally involved simple measures of apparent nest survival or Mayfield constant-nest-survival models. However, these methods do not allow researchers to build models that rigorously assess the importance of a wide range of biological factors that affect nest survival. Models that incorporate greater detail, such as temporal variation in nest survival and covariates representative of individual nests represent a substantial improvement over traditional estimation methods. In an attempt to improve nest survival estimation procedures, we introduce the nest survival model now available in the program MARK and demonstrate its use on a nesting study of Mountain Plovers (Charadrius montanus Townsend) in Montana, USA. We modeled the daily survival of Mountain Plover nests as a function of the sex of the incubating adult, nest age, year, linear and quadratic time trends, and two weather covariates (maximum daily temperature and daily precipitation) during a six-year stud...

884 citations

Journal ArticleDOI
Guojie Zhang1, Guojie Zhang2, Cai Li1, Qiye Li1, Bo Li1, Denis M. Larkin3, Chul Hee Lee4, Jay F. Storz5, Agostinho Antunes6, Matthew J. Greenwold7, Robert W. Meredith8, Anders Ödeen9, Jie Cui10, Qi Zhou11, Luohao Xu1, Hailin Pan1, Zongji Wang12, Lijun Jin1, Pei Zhang1, Haofu Hu1, Wei Yang1, Jiang Hu1, Jin Xiao1, Zhikai Yang1, Yang Liu1, Qiaolin Xie1, Hao Yu1, Jinmin Lian1, Ping Wen1, Fang Zhang1, Hui Li1, Yongli Zeng1, Zijun Xiong1, Shiping Liu12, Long Zhou1, Zhiyong Huang1, Na An1, Jie Wang13, Qiumei Zheng1, Yingqi Xiong1, Guangbiao Wang1, Bo Wang1, Jingjing Wang1, Yu Fan14, Rute R. da Fonseca2, Alonzo Alfaro-Núñez2, Mikkel Schubert2, Ludovic Orlando2, Tobias Mourier2, Jason T. Howard15, Ganeshkumar Ganapathy15, Andreas R. Pfenning15, Osceola Whitney15, Miriam V. Rivas15, Erina Hara15, Julia Smith15, Marta Farré3, Jitendra Narayan16, Gancho T. Slavov16, Michael N Romanov17, Rui Borges6, João Paulo Machado6, Imran Khan6, Mark S. Springer18, John Gatesy18, Federico G. Hoffmann19, Juan C. Opazo20, Olle Håstad21, Roger H. Sawyer7, Heebal Kim4, Kyu-Won Kim4, Hyeon Jeong Kim4, Seoae Cho4, Ning Li22, Yinhua Huang22, Michael William Bruford23, Xiangjiang Zhan13, Andrew Dixon, Mads F. Bertelsen24, Elizabeth P. Derryberry25, Wesley C. Warren26, Richard K. Wilson26, Shengbin Li27, David A. Ray19, Richard E. Green28, Stephen J. O'Brien29, Darren K. Griffin17, Warren E. Johnson30, David Haussler28, Oliver A. Ryder, Eske Willerslev2, Gary R. Graves31, Per Alström21, Jon Fjeldså32, David P. Mindell33, Scott V. Edwards34, Edward L. Braun35, Carsten Rahbek32, David W. Burt36, Peter Houde37, Yong Zhang1, Huanming Yang38, Jian Wang1, Erich D. Jarvis15, M. Thomas P. Gilbert2, M. Thomas P. Gilbert39, Jun Wang 
12 Dec 2014-Science
TL;DR: This work explored bird macroevolution using full genomes from 48 avian species representing all major extant clades to reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.
Abstract: Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.

872 citations

Journal ArticleDOI
TL;DR: It is concluded that consistent individual variation in open field behaviour exists in individuals from the wild, and this behavioural variation is heritable and poses the question of how this variation is maintained under natural conditions.

760 citations

Journal ArticleDOI
TL;DR: The recent advancements and techniques used for identifying species, individuals, and gender are reviewed and recommendations for laboratory- and field-based methods to improve the reliability and accuracy of data collected from noninvasive genetic samples are provided.
Abstract: Noninvasive genetic sampling provides great potential for research and management applications in wildlife biology. Researchers can obtain DNA from a variety of sources including hair, feces, urine, feathers, shed skin, saliva, and egg shells without handling or observing animals. These samples can then be used to identify the presence of rare or elusive species, count and identify individuals, determine gender, and identify diet items, or samples can be used to evaluate genetic diversity, population structure, and mating system. We review the recent advancements and techniques used for identifying species, individuals, and gender. We also address the potential pitfalls of noninvasive genetic sampling and provide recommendations for laboratory- and field-based methods to improve the reliability and accuracy of data collected from noninvasive genetic samples.

665 citations