scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A facile one-step approach to synthesizing ZnO/graphene composites for enhanced degradation of methylene blue under visible light

TL;DR: In this paper, a series of visible light-responsive ZnO/graphene composite photocatalysts were successfully synthesized by a facile single step solvothermal method, using ethylene glycol as a solvent and a reducing agent.
About: This article is published in Applied Surface Science.The article was published on 2013-06-01. It has received 242 citations till now. The article focuses on the topics: Graphene & Visible spectrum.
Citations
More filters
Journal ArticleDOI
TL;DR: Composite Photocatalysts Nan Zhang,‚‡ Min-Quan Yang,†,‡ Siqi Liu,*,‡ Yugang Sun,* and Yi-Jun Xu*,† are authors of this paper.
Abstract: Composite Photocatalysts Nan Zhang,†,‡ Min-Quan Yang,†,‡ Siqi Liu,†,‡ Yugang Sun,* and Yi-Jun Xu*,†,‡ †State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, P.R. China ‡College of Chemistry, New Campus, Fuzhou University, Fuzhou 350108, P.R. China Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States

997 citations

Journal ArticleDOI
TL;DR: In this paper, the types and structures of organic pollutants, and the classes of nanomaterials and their application for the remediation of organic contaminants in water are systematically summarized.

339 citations

Journal ArticleDOI
TL;DR: The major "graphene-on-surface" structures are described and the roles of their properties and related phenomena in governing the overall performance for specific applications including optoelectronics, surface catalysis, anti-friction and superlubricity, and coatings and composites are examined.
Abstract: Graphene has demonstrated great potential in next-generation electronics due to its unique two-dimensional structure and properties including a zero-gap band structure, high electron mobility, and high electrical and thermal conductivity. The integration of atom-thick graphene into a device always involves its interaction with a supporting substrate by van der Waals forces and other intermolecular forces or even covalent bonding, and this is critical to its real applications. Graphene films on different surfaces are expected to exhibit significant differences in their properties, which lead to changes in their morphology, electronic structure, surface chemistry/physics, and surface/interface states. Therefore, a thorough understanding of the surface/interface properties is of great importance. In this review, we describe the major “graphene-on-surface” structures and examine the roles of their properties and related phenomena in governing the overall performance for specific applications including optoelectronics, surface catalysis, anti-friction and superlubricity, and coatings and composites. Finally, perspectives on the opportunities and challenges of graphene-on-surface systems are discussed.

285 citations

Journal ArticleDOI
TL;DR: In this paper, the structural diversity, tunable properties, and synthetic strategies of tailored graphene materials (GMs), such as zero-dimensional graphene quantum dots, one-dimensional GM nanoribbons and three-dimensional GMs, are discussed.

272 citations

Journal ArticleDOI
TL;DR: In this study, degradation of Rhodamine B (RhB) as a dye pollutant was investigated in the presence of pristine ZnO nanoparticles andZnO/CNTs composites using photocatalysis and sonocatalysis systems separately and simultaneously and the adsorption was found to be an essential factor in the degradation of the dye.

270 citations


Cites background from "A facile one-step approach to synth..."

  • ...A number of studies have demonstrated that the complete mineralization, i.e., oxidation to CO2 and H2O, of a variety of chlorinated aromatics occurred via heterogeneous photooxidation over TiO2 and ZnO [25-26]....

    [...]

  • ..., oxidation to CO2 and H2O, of a variety of chlorinated aromatics occurred via heterogeneous photooxidation over TiO2 and ZnO [25-26]....

    [...]

References
More filters
Journal ArticleDOI
01 Jun 2007-Carbon
TL;DR: In this paper, a colloidal suspension of exfoliated graphene oxide sheets in water with hydrazine hydrate results in their aggregation and subsequent formation of a high surface area carbon material which consists of thin graphene-based sheets.

12,756 citations

Journal ArticleDOI
TL;DR: It is reported that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization, making it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications.
Abstract: Graphene sheets offer extraordinary electronic, thermal and mechanical properties and are expected to find a variety of applications. A prerequisite for exploiting most proposed applications for graphene is the availability of processable graphene sheets in large quantities. The direct dispersion of hydrophobic graphite or graphene sheets in water without the assistance of dispersing agents has generally been considered to be an insurmountable challenge. Here we report that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization. This discovery has enabled us to develop a facile approach to large-scale production of aqueous graphene dispersions without the need for polymeric or surfactant stabilizers. Our findings make it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications.

8,534 citations

Journal ArticleDOI
TL;DR: CMG materials are made from 1-atom thick sheets of carbon, functionalized as needed, and here their performance in an ultracapacitor cell is demonstrated, illustrating the exciting potential for high performance, electrical energy storage devices based on this new class of carbon material.
Abstract: The surface area of a single graphene sheet is 2630 m2/g, substantially higher than values derived from BET surface area measurements of activated carbons used in current electrochemical double layer capacitors. Our group has pioneered a new carbon material that we call chemically modified graphene (CMG). CMG materials are made from 1-atom thick sheets of carbon, functionalized as needed, and here we demonstrate in an ultracapacitor cell their performance. Specific capacitances of 135 and 99 F/g in aqueous and organic electrolytes, respectively, have been measured. In addition, high electrical conductivity gives these materials consistently good performance over a wide range of voltage scan rates. These encouraging results illustrate the exciting potential for high performance, electrical energy storage devices based on this new class of carbon material.

7,505 citations

Journal ArticleDOI
Hao Zhang1, Xiao-Jun Lv1, Yueming Li1, Ying Wang1, Jinghong Li1 
26 Jan 2010-ACS Nano
TL;DR: A chemically bonded TiO(2) (P25)-graphene nanocomposite photocatalyst with graphene oxide and P25, using a facile one-step hydrothermal method could provide new insights into the fabrication of a TiO (2)-carbon composite as high performance photocatalysts and facilitate their application in the environmental protection issues.
Abstract: Herein we obtained a chemically bonded TiO2 (P25)-graphene nanocomposite photocatalyst with graphene oxide and P25, using a facile one-step hydrothermal method. During the hydrothermal reaction, both of the reduction of graphene oxide and loading of P25 were achieved. The as-prepared P25-graphene photocatalyst possessed great adsorptivity of dyes, extended light absorption range, and efficient charge separation properties simultaneously, which was rarely reported in other TiO2−carbon photocatalysts. Hence, in the photodegradation of methylene blue, a significant enhancement in the reaction rate was observed with P25-graphene, compared to the bare P25 and P25-CNTs with the same carbon content. Overall, this work could provide new insights into the fabrication of a TiO2−carbon composite as high performance photocatalysts and facilitate their application in the environmental protection issues.

2,944 citations