scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures

01 Aug 2011-Nature Materials (Nature Research)-Vol. 10, Iss: 8, pp 625-630
TL;DR: This work demonstrates a TaO(x)-based asymmetric passive switching device with which it was able to localize resistance switching and satisfy all aforementioned requirements, and eliminates any need for a discrete transistor or diode in solving issues of stray leakage current paths in high-density crossbar arrays.
Abstract: Numerous candidates attempting to replace Si-based flash memory have failed for a variety of reasons over the years. Oxide-based resistance memory and the related memristor have succeeded in surpassing the specifications for a number of device requirements. However, a material or device structure that satisfies high-density, switching-speed, endurance, retention and most importantly power-consumption criteria has yet to be announced. In this work we demonstrate a TaO(x)-based asymmetric passive switching device with which we were able to localize resistance switching and satisfy all aforementioned requirements. In particular, the reduction of switching current drastically reduces power consumption and results in extreme cycling endurances of over 10(12). Along with the 10 ns switching times, this allows for possible applications to the working-memory space as well. Furthermore, by combining two such devices each with an intrinsic Schottky barrier we eliminate any need for a discrete transistor or diode in solving issues of stray leakage current paths in high-density crossbar arrays.
Citations
More filters
Journal ArticleDOI
TL;DR: The performance requirements for computing with memristive devices are examined and how the outstanding challenges could be met are examined.
Abstract: Memristive devices are electrical resistance switches that can retain a state of internal resistance based on the history of applied voltage and current. These devices can store and process information, and offer several key performance characteristics that exceed conventional integrated circuit technology. An important class of memristive devices are two-terminal resistance switches based on ionic motion, which are built from a simple conductor/insulator/conductor thin-film stack. These devices were originally conceived in the late 1960s and recent progress has led to fast, low-energy, high-endurance devices that can be scaled down to less than 10 nm and stacked in three dimensions. However, the underlying device mechanisms remain unclear, which is a significant barrier to their widespread application. Here, we review recent progress in the development and understanding of memristive devices. We also examine the performance requirements for computing with memristive devices and detail how the outstanding challenges could be met.

3,037 citations

Journal ArticleDOI
02 May 2012
TL;DR: The physical mechanism, material properties, and electrical characteristics of a variety of binary metal-oxide resistive switching random access memory (RRAM) are discussed, with a focus on the use of RRAM for nonvolatile memory application.
Abstract: In this paper, recent progress of binary metal-oxide resistive switching random access memory (RRAM) is reviewed. The physical mechanism, material properties, and electrical characteristics of a variety of binary metal-oxide RRAM are discussed, with a focus on the use of RRAM for nonvolatile memory application. A review of recent development of large-scale RRAM arrays is given. Issues such as uniformity, endurance, retention, multibit operation, and scaling trends are discussed.

2,295 citations

Journal ArticleDOI
18 Jun 2016
TL;DR: This work proposes a novel PIM architecture, called PRIME, to accelerate NN applications in ReRAM based main memory, and distinguishes itself from prior work on NN acceleration, with significant performance improvement and energy saving.
Abstract: Processing-in-memory (PIM) is a promising solution to address the "memory wall" challenges for future computer systems. Prior proposed PIM architectures put additional computation logic in or near memory. The emerging metal-oxide resistive random access memory (ReRAM) has showed its potential to be used for main memory. Moreover, with its crossbar array structure, ReRAM can perform matrix-vector multiplication efficiently, and has been widely studied to accelerate neural network (NN) applications. In this work, we propose a novel PIM architecture, called PRIME, to accelerate NN applications in ReRAM based main memory. In PRIME, a portion of ReRAM crossbar arrays can be configured as accelerators for NN applications or as normal memory for a larger memory space. We provide microarchitecture and circuit designs to enable the morphable functions with an insignificant area overhead. We also design a software/hardware interface for software developers to implement various NNs on PRIME. Benefiting from both the PIM architecture and the efficiency of using ReRAM for NN computation, PRIME distinguishes itself from prior work on NN acceleration, with significant performance improvement and energy saving. Our experimental results show that, compared with a state-of-the-art neural processing unit design, PRIME improves the performance by ~2360× and the energy consumption by ~895×, across the evaluated machine learning benchmarks.

1,197 citations


Cites background from "A fast, high-endurance and scalable..."

  • ...The reported endurance of ReRAM is up to 10(12) [21], [22], making the lifetime issue of ReRAM-based memory less concerned than PCM based main memory whose endurance has been assumed between 10(6)-10(8) [23]....

    [...]

Journal ArticleDOI
01 Jun 2018
TL;DR: This Review Article examines the development of in-memory computing using resistive switching devices, where the two-terminal structure of the devices, theirresistive switching properties, and direct data processing in the memory can enable area- and energy-efficient computation.
Abstract: Modern computers are based on the von Neumann architecture in which computation and storage are physically separated: data are fetched from the memory unit, shuttled to the processing unit (where computation takes place) and then shuttled back to the memory unit to be stored. The rate at which data can be transferred between the processing unit and the memory unit represents a fundamental limitation of modern computers, known as the memory wall. In-memory computing is an approach that attempts to address this issue by designing systems that compute within the memory, thus eliminating the energy-intensive and time-consuming data movement that plagues current designs. Here we review the development of in-memory computing using resistive switching devices, where the two-terminal structure of the devices, their resistive switching properties, and direct data processing in the memory can enable area- and energy-efficient computation. We examine the different digital, analogue, and stochastic computing schemes that have been proposed, and explore the microscopic physical mechanisms involved. Finally, we discuss the challenges in-memory computing faces, including the required scaling characteristics, in delivering next-generation computing. This Review Article examines the development of in-memory computing using resistive switching devices.

1,193 citations

Journal ArticleDOI
Feng Pan1, Song Gao1, Chao Chen1, Cheng Song1, Fei Zeng1 
TL;DR: A comprehensive review of the recent progress in the so-called resistive random access memories (RRAMs) can be found in this article, where a brief introduction is presented to describe the construction and development of RRAMs, their potential for broad applications in the fields of nonvolatile memory, unconventional computing and logic devices, and the focus of research concerning RRAMS over the past decade.
Abstract: This review article attempts to provide a comprehensive review of the recent progress in the so-called resistive random access memories (RRAMs) First, a brief introduction is presented to describe the construction and development of RRAMs, their potential for broad applications in the fields of nonvolatile memory, unconventional computing and logic devices, and the focus of research concerning RRAMs over the past decade Second, both inorganic and organic materials used in RRAMs are summarized, and their respective advantages and shortcomings are discussed Third, the important switching mechanisms are discussed in depth and are classified into ion migration, charge trapping/de-trapping, thermochemical reaction, exclusive mechanisms in inorganics, and exclusive mechanisms in organics Fourth, attention is given to the application of RRAMs for data storage, including their current performance, methods for performance enhancement, sneak-path issue and possible solutions, and demonstrations of 2-D and 3-D crossbar arrays Fifth, prospective applications of RRAMs in unconventional computing, as well as logic devices and multi-functionalization of RRAMs, are comprehensively summarized and thoroughly discussed The present review article ends with a short discussion concerning the challenges and future prospects of the RRAMs

1,129 citations

References
More filters
Journal ArticleDOI
01 May 2008-Nature
TL;DR: It is shown, using a simple analytical example, that memristance arises naturally in nanoscale systems in which solid-state electronic and ionic transport are coupled under an external bias voltage.
Abstract: Anyone who ever took an electronics laboratory class will be familiar with the fundamental passive circuit elements: the resistor, the capacitor and the inductor. However, in 1971 Leon Chua reasoned from symmetry arguments that there should be a fourth fundamental element, which he called a memristor (short for memory resistor). Although he showed that such an element has many interesting and valuable circuit properties, until now no one has presented either a useful physical model or an example of a memristor. Here we show, using a simple analytical example, that memristance arises naturally in nanoscale systems in which solid-state electronic and ionic transport are coupled under an external bias voltage. These results serve as the foundation for understanding a wide range of hysteretic current-voltage behaviour observed in many nanoscale electronic devices that involve the motion of charged atomic or molecular species, in particular certain titanium dioxide cross-point switches.

8,971 citations

Journal ArticleDOI
TL;DR: Experimental evidence is provided to support this general model of memristive electrical switching in oxide systems, and micro- and nanoscale TiO2 junction devices with platinum electrodes that exhibit fast bipolar nonvolatile switching are built.
Abstract: Nanoscale metal/oxide/metal switches have the potential to transform the market for nonvolatile memory and could lead to novel forms of computing. However, progress has been delayed by difficulties in understanding and controlling the coupled electronic and ionic phenomena that dominate the behaviour of nanoscale oxide devices. An analytic theory of the ‘memristor’ (memory-resistor) was first developed from fundamental symmetry arguments in 1971, and we recently showed that memristor behaviour can naturally explain such coupled electron–ion dynamics. Here we provide experimental evidence to support this general model of memristive electrical switching in oxide systems. We have built micro- and nanoscale TiO2 junction devices with platinum electrodes that exhibit fast bipolar nonvolatile switching. We demonstrate that switching involves changes to the electronic barrier at the Pt/TiO2 interface due to the drift of positively charged oxygen vacancies under an applied electric field. Vacancy drift towards the interface creates conducting channels that shunt, or short-circuit, the electronic barrier to switch ON. The drift of vacancies away from the interface annilihilates such channels, recovering the electronic barrier to switch OFF. Using this model we have built TiO2 crosspoints with engineered oxygen vacancy profiles that predictively control the switching polarity and conductance. Nanoscale metal/oxide/metal devices that are capable of fast non-volatile switching have been built from platinum and titanium dioxide. The devices could have applications in ultrahigh density memory cells and novel forms of computing.

2,744 citations

Journal ArticleDOI
TL;DR: In situ current-voltage and low-temperature conductivity measurements confirm that switching occurs by the formation and disruption of Ti(n)O(2n-1) (or so-called Magnéli phase) filaments, which will provide a foundation for unravelling the full mechanism of resistance switching in oxide thin films.
Abstract: Resistance switching in metal oxides could form the basis for next-generation non-volatile memory. It has been argued that the current in the high-conductivity state of several technologically relevant oxide materials flows through localized filaments, but these filaments have been characterized only indirectly, limiting our understanding of the switching mechanism. Here, we use high-resolution transmission electron microscopy to probe directly the nanofilaments in a Pt/TiO2/Pt system during resistive switching. In situ current–voltage and low-temperature (∼130 K) conductivity measurements confirm that switching occurs by the formation and disruption of TinO2n−1 (or so-called Magneli phase) filaments. Knowledge of the composition, structure and dimensions of these filaments will provide a foundation for unravelling the full mechanism of resistance switching in oxide thin films, and help guide research into the stability and scalability of such films for applications. Nanoscale filaments with a Magneli structure are shown to be responsible for resistance switching in thin films of TiO2, and the properties of the filaments are directly observed during the switching process.

1,880 citations

Journal ArticleDOI
07 Jul 2000-Science
TL;DR: A concept for molecular electronics exploiting carbon nanotubes as both molecular device elements and molecular wires for reading and writing information was developed and the viability of this concept is demonstrated by detailed calculations and by the experimental realization of a reversible, bistable nanotube-based bit.
Abstract: A concept for molecular electronics exploiting carbon nanotubes as both molecular device elements and molecular wires for reading and writing information was developed. Each device element is based on a suspended, crossed nanotube geometry that leads to bistable, electrostatically switchable ON/OFF states. The device elements are naturally addressable in large arrays by the carbon nanotube molecular wires making up the devices. These reversible, bistable device elements could be used to construct nonvolatile random access memory and logic function tables at an integration level approaching 10 12 elements per square centimeter and an element operation frequency in excess of 100 gigahertz. The viability of this concept is demonstrated by detailed calculations and by the experimental realization of a reversible, bistable nanotube-based bit.

1,844 citations

Journal ArticleDOI
08 Apr 2010-Nature
TL;DR: Bipolar voltage-actuated switches, a family of nonlinear dynamical memory devices, can execute material implication (IMP), which is a fundamental Boolean logic operation on two variables p and q such that pIMPq is equivalent to (NOTp)ORq.
Abstract: The authors of the International Technology Roadmap for Semiconductors-the industry consensus set of goals established for advancing silicon integrated circuit technology-have challenged the computing research community to find new physical state variables (other than charge or voltage), new devices, and new architectures that offer memory and logic functions beyond those available with standard transistors. Recently, ultra-dense resistive memory arrays built from various two-terminal semiconductor or insulator thin film devices have been demonstrated. Among these, bipolar voltage-actuated switches have been identified as physical realizations of 'memristors' or memristive devices, combining the electrical properties of a memory element and a resistor. Such devices were first hypothesized by Chua in 1971 (ref. 15), and are characterized by one or more state variables that define the resistance of the switch depending upon its voltage history. Here we show that this family of nonlinear dynamical memory devices can also be used for logic operations: we demonstrate that they can execute material implication (IMP), which is a fundamental Boolean logic operation on two variables p and q such that pIMPq is equivalent to (NOTp)ORq. Incorporated within an appropriate circuit, memristive switches can thus perform 'stateful' logic operations for which the same devices serve simultaneously as gates (logic) and latches (memory) that use resistance instead of voltage or charge as the physical state variable.

1,642 citations