scispace - formally typeset
Journal ArticleDOI

A fast learning algorithm for deep belief nets

Reads0
Chats0
TLDR
A fast, greedy algorithm is derived that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory.
Abstract
We show how to use "complementary priors" to eliminate the explaining-away effects that make inference difficult in densely connected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory. The fast, greedy algorithm is used to initialize a slower learning procedure that fine-tunes the weights using a contrastive version of the wake-sleep algorithm. After fine-tuning, a network with three hidden layers forms a very good generative model of the joint distribution of handwritten digit images and their labels. This generative model gives better digit classification than the best discriminative learning algorithms. The low-dimensional manifolds on which the digits lie are modeled by long ravines in the free-energy landscape of the top-level associative memory, and it is easy to explore these ravines by using the directed connections to display what the associative memory has in mind.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Deep learning

TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Journal ArticleDOI

Generative Adversarial Nets

TL;DR: A new framework for estimating generative models via an adversarial process, in which two models are simultaneously train: a generative model G that captures the data distribution and a discriminative model D that estimates the probability that a sample came from the training data rather than G.
Book

Deep Learning

TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Book

Reinforcement Learning: An Introduction

TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Journal Article

Dropout: a simple way to prevent neural networks from overfitting

TL;DR: It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
References
More filters
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Book

Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference

TL;DR: Probabilistic Reasoning in Intelligent Systems as mentioned in this paper is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty, and provides a coherent explication of probability as a language for reasoning with partial belief.
Journal ArticleDOI

Shape matching and object recognition using shape contexts

TL;DR: This paper presents work on computing shape models that are computationally fast and invariant basic transformations like translation, scaling and rotation, and proposes shape detection using a feature called shape context, which is descriptive of the shape of the object.
Journal ArticleDOI

Training products of experts by minimizing contrastive divergence

TL;DR: A product of experts (PoE) is an interesting candidate for a perceptual system in which rapid inference is vital and generation is unnecessary because it is hard even to approximate the derivatives of the renormalization term in the combination rule.
Proceedings ArticleDOI

Best practices for convolutional neural networks applied to visual document analysis

TL;DR: A set of concrete bestpractices that document analysis researchers can use to get good results with neural networks, including a simple "do-it-yourself" implementation of convolution with a flexible architecture suitable for many visual document problems.
Related Papers (5)