scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A fast radio burst associated with a Galactic magnetar.

04 Nov 2020-Nature (Nature Publishing Group)-Vol. 587, Iss: 7832, pp 59-62
TL;DR: A millisecond-duration radio burst from the Galactic magnetar SGR-1935+2154 with a fluence of 1.5 ± 0.3 megajansky milliseconds was detected by the STARE2 radio array in the 1,281-1,468 megahertz band.
Abstract: Since their discovery in 20071, much effort has been devoted to uncovering the sources of the extragalactic, millisecond-duration fast radio bursts (FRBs)2. A class of neutron stars known as magnetars is a leading candidate source of FRBs3,4. Magnetars have surface magnetic fields in excess of 1014 gauss, the decay of which powers a range of high-energy phenomena5. Here we report observations of a millisecond-duration radio burst from the Galactic magnetar SGR 1935+2154, with a fluence of 1.5 ± 0.3 megajansky milliseconds. This event, FRB 200428 (ST 200428A), was detected on 28 April 2020 by the STARE2 radio array6 in the 1,281–1,468 megahertz band. The isotropic-equivalent energy released in FRB 200428 is 4 × 103 times greater than that of any radio pulse from the Crab pulsar—previously the source of the brightest Galactic radio bursts observed on similar timescales7. FRB 200428 is just 30 times less energetic than the weakest extragalactic FRB observed so far8, and is drawn from the same population as the observed FRB sample. The coincidence of FRB 200428 with an X-ray burst9–11 favours emission models that describe synchrotron masers or electromagnetic pulses powered by magnetar bursts and giant flares3,4,12,13. The discovery of FRB 200428 implies that active magnetars such as SGR 1935+2154 can produce FRBs at extragalactic distances. Observations of the fast radio burst FRB 200428 coinciding with X-rays from the Galactic magnetar SGR 1935+2154 indicate that active magnetars can produce fast radio bursts at extragalactic distances.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a repeating fast radio burst (FRB) with a low dispersion measure (DM) was detected by the Canadian Hydrogen Intensity Mapping Experiment FRB project.
Abstract: We report on the discovery of FRB 20200120E, a repeating fast radio burst (FRB) with a low dispersion measure (DM) detected by the Canadian Hydrogen Intensity Mapping Experiment FRB project. The source DM of 87.82 pc cm−3 is the lowest recorded from an FRB to date, yet it is significantly higher than the maximum expected from the Milky Way interstellar medium in this direction (∼50 pc cm−3). We have detected three bursts and one candidate burst from the source over the period 2020 January–November. The baseband voltage data for the event on 2020 January 20 enabled a sky localization of the source to within ≃14 arcmin2 (90% confidence). The FRB localization is close to M81, a spiral galaxy at a distance of 3.6 Mpc. The FRB appears on the outskirts of M81 (projected offset ∼20 kpc) but well inside its extended H i and thick disks. We empirically estimate the probability of a chance coincidence with M81 to be <10−2. However, we cannot reject a Milky Way halo origin for the FRB. Within the FRB localization region, we find several interesting cataloged M81 sources and a radio point source detected in the Very Large Array Sky Survey. We search for prompt X-ray counterparts in Swift Burst Alert Telescope and Fermi/GBM data, and, for two of the FRB 20200120E bursts, we rule out coincident SGR 1806−20-like X-ray bursts. Due to the proximity of FRB 20200120E, future follow-up for prompt multiwavelength counterparts and subarcsecond localization could be constraining of proposed FRB models.

118 citations

Journal ArticleDOI
C. K. Li1, Lin Lin2, Shaolin Xiong1, Ming-Yu Ge1, X. B. Li1, Tong Li3, Tong Li1, F. J. Lu1, S. N. Zhang1, Y. L. Tuo1, Y. Nang1, Bing Zhang4, S. Xiao1, Y. B. Chen1, Li-Ming Song1, Y. P. Xu1, C. Z. Liu1, S. M. Jia1, X. L. Cao1, J. L. Qu1, Songbo Zhang1, Yu-Dong Gu1, J. Y. Liao1, Xin-Fu Zhao1, Y. H. Tan1, J. Y. Nie1, H. S. Zhao1, S. J. Zheng1, Y. G. Zheng1, Y. G. Zheng5, Qiu-Yi Luo1, C. Cai1, Bo Li1, W. C. Xue1, Qingcui Bu6, Qingcui Bu1, Z. Chang1, Gang Chen1, L. Chen2, Tian-Xiang Chen1, Y. B. Chen3, Y. P. Chen1, Wei Cui3, Weiguang Cui1, J. K. Deng3, Yi-Qiao Dong1, Yuan-Yuan Du1, M. X. Fu3, G. H. Gao1, H. Gao1, Min Gao1, J. Guan1, Cheng-Cheng Guo1, Da-Wei Han1, Ya Fang Huang1, Jia Huo1, Luhua Jiang1, Wenhan Jiang1, J. Jin1, Y. J. Jin3, L. D. Kong1, Gang Li1, Mao-Shun Li1, Wenxiong Li1, X. X. Li1, Xuelong Li1, Y. G. Li1, Z. W. Li1, X. H. Liang1, B. S. Liu1, GuoQing Liu3, H. W. Liu1, X. J. Liu1, Yunchao Liu3, B. Lu1, Xue-Feng Lu1, Tao Luo1, X. H. Ma1, Bin Meng1, Ge Ou1, N. Sai1, R. C. Shang3, X. Y. Song1, Lei Sun1, Lian Tao1, Cunguo Wang1, G. F. Wang1, J. Z. Wang1, W. S. Wang1, Y. S. Wang1, XiangYang Wen1, B. B. Wu1, B. Y. Wu1, M. Wu1, G. C. Xiao1, H. Xu1, J. W. Yang1, Sisi Yang1, Y. J. Yang1, Y. J. Yang1, Qi-Bin Yi1, Qi-Bin Yi7, Q. Q. Yin1, Yuan You1, Aimei Zhang1, Chun-sheng Zhang1, Fuqin Zhang1, H. M. Zhang1, Junqiang Zhang1, T. Zhang1, W. C. Zhang1, Wan-Chang Zhang1, W. Z. Zhang2, Y. Zhang1, Yue Zhang1, Y. F. Zhang1, Y. J. Zhang1, Z. Zhang3, Zhi Zhang3, Z. L. Zhang1, D. K. Zhou1, J. F. Zhou3, Yu-Xuan Zhu1, Y. X. Zhu1, Y. X. Zhu8, R. L. Zhuang3 
TL;DR: In this article, the authors reported the detection of a non-thermal X-ray burst in the 1-250 keV energy band with the Insight-HXMT satellite, which they identify as having been emitted from SGR J1935+2154.
Abstract: Fast radio bursts (FRBs) are short pulses observed in the radio band from cosmological distances1. One class of models invokes soft gamma-ray repeaters (SGRs), or magnetars, as the sources of FRBs2. Some radio pulses have been observed from some magnetars3, but no FRB-like events have been detected in association with any magnetar burst, including one giant flare4. Recently, a pair of FRB-like bursts (termed FRB 200428) separated by 29 milliseconds were detected from the general direction of the Galactic magnetar SGR J1935+2154 (refs. 5,6). Here, we report the detection of a non-thermal X-ray burst in the 1–250 keV energy band with the Insight-HXMT satellite7, which we identify as having been emitted from SGR J1935+2154. The burst showed two hard peaks with a separation of 34 milliseconds, broadly consistent with that of the two bursts in FRB 200428. The delay time between the double radio peak and the X-ray peaks is about 8.62 s, fully consistent with the dispersion delay of FRB 200428. We thus identify the non-thermal X-ray burst to be associated with FRB 200428, whose high-energy counterpart is the two hard X-ray peaks. Our results suggest that the non-thermal X-ray burst and FRB 200428 share the same physical origin in an explosive event from SGR J1935+2154. Insight-HXMT detected a double-peaked X-ray burst from Galactic magnetar SGR J1935+2154, consistent with two fast radio bursts (FRBs) observed from the same object within seconds. This coincidence suggests a common physical origin, and gives insight into the mechanism behind the origin of FRBs.

117 citations

Journal ArticleDOI
TL;DR: The recent detection of a Galactic fast radio burst in association with a soft gamma-ray repeater suggests that magnetar engines can produce at least some, and probably all, fast radio bursts.
Abstract: Fast radio bursts are mysterious millisecond-duration transients prevalent in the radio sky. Rapid accumulation of data in recent years has facilitated an understanding of the underlying physical mechanisms of these events. Knowledge gained from the neighboring fields of gamma-ray bursts and radio pulsars also offered insight. Here I review developments in this fast-moving field.Two generic categories of radiation model invoking either magnetospheres of compact objects (neutron stars or black holes) or relativistic shocks launched from such objects have been much debated. The recent detection of a Galactic fast radio burst in association with a soft gamma-ray repeater suggests that magnetar engines can produce at least some, and probably all, fast radio bursts. Other engines that could produce fast radio bursts are not required, but are also not impossible.

116 citations

Journal ArticleDOI
04 Nov 2020-Nature
TL;DR: In this paper, an 8-hour radio observational campaign of the Galactic magnetar SGR 1935+2154, assisted by multi-wavelength data, indicates that associations between fast radio bursts and soft γ-ray bursts are rare.
Abstract: Fast radio bursts (FRBs) are millisecond-duration radio transients of unknown physical origin observed at extragalactic distances1–3. It has long been speculated that magnetars are the engine powering repeating bursts from FRB sources4–13, but no convincing evidence has been collected so far14. Recently, the Galactic magnetar SRG 1935+2154 entered an active phase by emitting intense soft γ-ray bursts15. One FRB-like event with two peaks (FRB 200428) and a luminosity slightly lower than the faintest extragalactic FRBs was detected from the source, in association with a soft γ-ray/hard-X-ray flare18–21. Here we report an eight-hour targeted radio observational campaign comprising four sessions and assisted by multi-wavelength (optical and hard-X-ray) data. During the third session, 29 soft-γ-ray repeater (SGR) bursts were detected in γ-ray energies. Throughout the observing period, we detected no single dispersed pulsed emission coincident with the arrivals of SGR bursts, but unfortunately we were not observing when the FRB was detected. The non-detection places a fluence upper limit that is eight orders of magnitude lower than the fluence of FRB 200428. Our results suggest that FRB–SGR burst associations are rare. FRBs may be highly relativistic and geometrically beamed, or FRB-like events associated with SGR bursts may have narrow spectra and characteristic frequencies outside the observed band. It is also possible that the physical conditions required to achieve coherent radiation in SGR bursts are difficult to satisfy, and that only under extreme conditions could an FRB be associated with an SGR burst. An 8-hour radio observational campaign of the Galactic magnetar SGR 1935+2154, assisted by multi-wavelength data, indicates that associations between fast radio bursts and soft γ-ray bursts are rare.

114 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported the detection with Konus-Wind of a hard X-ray event of 28 April 2020 temporally coincident with a bright, two-peak radio burst in the direction of the Galactic magnetar SGR 1935+2154, with properties remarkably similar to those of FRBs.
Abstract: Fast radio bursts (FRBs) are bright, millisecond-scale radio flashes of unknown physical origin1. Young, highly magnetized, isolated neutron stars—magnetars—have been suggested as the most promising candidates for FRB progenitors owing to their energetics and high X-ray flaring activity2,3. Here we report the detection with Konus-Wind of a hard X-ray event of 28 April 2020 temporally coincident with a bright, two-peak radio burst4,5 in the direction of Galactic magnetar SGR 1935+2154, with properties remarkably similar to those of FRBs. We show that the two peaks of the double-peaked X-ray burst coincide in time with the radio peaks and infer a common source and the association of these phenomena. An unusual hardness of the X-ray spectrum strongly distinguishes the 28 April event among multiple ‘ordinary’ flares from SGR 1935+2154. A recent non-detection5–7 of radio emission from about 100 typical soft bursts from SGR 1935+2154 favours the idea that bright, FRB-like magnetar signals are associated with rare, hard-spectrum X-ray bursts. The implied rate of these hard X-ray bursts (~0.04 yr−1 magnetar−1) appears consistent with the rate estimate4 of SGR 1935+2154-like radio bursts (0.007–0.04 yr−1 magnetar−1). In April 2020, the Konus-Wind instrument registered two X-ray bursts temporally coincident with two radio bursts from the Galactic magnetar SGR 1935+2154. The unusual spectral hardness of the X-ray bursts may be an indicator of fast-radio-burst-like radio emission from magnetars.

109 citations

References
More filters
Journal ArticleDOI
Adrian M. Price-Whelan1, B. M. Sipőcz1, Hans Moritz Günther1, P. L. Lim1, Steven M. Crawford1, S. Conseil1, D. L. Shupe1, M. W. Craig1, N. Dencheva1, Adam Ginsburg1, Jacob T VanderPlas1, Larry Bradley1, David Pérez-Suárez1, M. de Val-Borro1, T. L. Aldcroft1, Kelle L. Cruz1, Thomas P. Robitaille1, E. J. Tollerud1, C. Ardelean1, Tomáš Babej1, Y. P. Bach1, Matteo Bachetti1, A. V. Bakanov1, Steven P. Bamford1, Geert Barentsen1, Pauline Barmby1, Andreas Baumbach1, Katherine Berry1, F. Biscani1, Médéric Boquien1, K. A. Bostroem1, L. G. Bouma1, G. B. Brammer1, E. M. Bray1, H. Breytenbach1, H. Buddelmeijer1, D. J. Burke1, G. Calderone1, J. L. Cano Rodríguez1, Mihai Cara1, José Vinícius de Miranda Cardoso1, S. Cheedella1, Y. Copin1, Lia Corrales1, Devin Crichton1, D. DÁvella1, Christoph Deil1, É. Depagne1, J. P. Dietrich1, Axel Donath1, M. Droettboom1, Nicholas Earl1, T. Erben1, Sebastien Fabbro1, Leonardo Ferreira1, T. Finethy1, R. T. Fox1, Lehman H. Garrison1, S. L. J. Gibbons1, Daniel A. Goldstein1, Ralf Gommers1, Johnny P. Greco1, P. Greenfield1, A. M. Groener1, Frédéric Grollier1, A. Hagen1, P. Hirst1, Derek Homeier1, Anthony Horton1, Griffin Hosseinzadeh1, L. Hu1, J. S. Hunkeler1, Ž. Ivezić1, A. Jain1, T. Jenness1, G. Kanarek1, Sarah Kendrew1, Nicholas S. Kern1, Wolfgang Kerzendorf1, A. Khvalko1, J. King1, D. Kirkby1, A. M. Kulkarni1, Ashok Kumar1, Antony Lee1, D. Lenz1, S. P. Littlefair1, Zhiyuan Ma1, D. M. Macleod1, M. Mastropietro1, C. McCully1, S. Montagnac1, Brett M. Morris1, M. Mueller1, Stuart Mumford1, D. Muna1, Nicholas A. Murphy1, Stefan Nelson1, G. H. Nguyen1, Joe Philip Ninan1, M. Nöthe1, S. Ogaz1, Seog Oh1, J. K. Parejko1, N. R. Parley1, Sergio Pascual1, R. Patil1, A. A. Patil1, A. L. Plunkett1, Jason X. Prochaska1, T. Rastogi1, V. Reddy Janga1, J. Sabater1, Parikshit Sakurikar1, Michael Seifert1, L. E. Sherbert1, H. Sherwood-Taylor1, A. Y. Shih1, J. Sick1, M. T. Silbiger1, Sudheesh Singanamalla1, Leo Singer1, P. H. Sladen1, K. A. Sooley1, S. Sornarajah1, Ole Streicher1, P. Teuben1, Scott Thomas1, Grant R. Tremblay1, J. Turner1, V. Terrón1, M. H. van Kerkwijk1, A. de la Vega1, Laura L. Watkins1, B. A. Weaver1, J. Whitmore1, Julien Woillez1, Victor Zabalza1, Astropy Contributors1 
TL;DR: The Astropy project as discussed by the authors is a Python project supporting the development of open-source and openly developed Python packages that provide commonly needed functionality to the astronomical community, including the core package astropy.
Abstract: The Astropy Project supports and fosters the development of open-source and openly developed Python packages that provide commonly needed functionality to the astronomical community. A key element of the Astropy Project is the core package astropy, which serves as the foundation for more specialized projects and packages. In this article, we provide an overview of the organization of the Astropy project and summarize key features in the core package, as of the recent major release, version 2.0. We then describe the project infrastructure designed to facilitate and support development for a broader ecosystem of interoperable packages. We conclude with a future outlook of planned new features and directions for the broader Astropy Project.

4,044 citations

Journal ArticleDOI
Adrian M. Price-Whelan, Brigitta Sipőcz, Hans Moritz Günther, P. L. Lim, Steven M. Crawford, Simon Conseil, David L. Shupe, Matt Craig, N. Dencheva, Adam Ginsburg, Jacob T VanderPlas, Larry Bradley, David Pérez-Suárez, M. de Val-Borro, T. L. Aldcroft, Kelle L. Cruz, Thomas P. Robitaille, Erik J. Tollerud, C. Ardelean, Tomáš Babej, Matteo Bachetti, A. V. Bakanov, Steven P. Bamford, Geert Barentsen, Pauline Barmby, Andreas Baumbach, Katherine Berry, F. Biscani, Médéric Boquien, K. A. Bostroem, L. G. Bouma, G. B. Brammer, Erik Bray, H. Breytenbach, H. Buddelmeijer, Douglas Burke, G. Calderone, J. L. Cano Rodríguez, Mihai Cara, José Vinícius de Miranda Cardoso, S. Cheedella, Y. Copin, Devin Crichton, D. DÁvella, Christoph Deil, Éric Depagne, J. P. Dietrich, Axel Donath, Michael Droettboom, Nicholas Earl, T. Erben, Sebastien Fabbro, Leonardo Ferreira, T. Finethy, R. T. Fox, Lehman H. Garrison, S. L. J. Gibbons, Daniel A. Goldstein, Ralf Gommers, Johnny P. Greco, Perry Greenfield, A. M. Groener, Frédéric Grollier, Alex Hagen, Paul Hirst, Derek Homeier, Anthony Horton, Griffin Hosseinzadeh, L. Hu, J. S. Hunkeler, Željko Ivezić, A. Jain, Tim Jenness, G. Kanarek, Sarah Kendrew, Nicholas S. Kern, Wolfgang Kerzendorf, A. Khvalko, J. King, D. Kirkby, A. M. Kulkarni, Ashok Kumar, Antony Lee, D. Lenz, S. P. Littlefair, Zhiyuan Ma, D. M. Macleod, M. Mastropietro, C. McCully, S. Montagnac, Brett M. Morris, Michael Mueller, Stuart Mumford, Demitri Muna, Nicholas A. Murphy, Stefan Nelson, G. H. Nguyen, Joe Philip Ninan, M. Nöthe, S. Ogaz, Seog Oh, John K. Parejko, N. R. Parley, Sergio Pascual, R. Patil, A. A. Patil, A. L. Plunkett, Jason X. Prochaska, T. Rastogi, V. Reddy Janga, Josep Sabater, Parikshit Sakurikar, Michael Seifert, L. E. Sherbert, H. Sherwood-Taylor, A. Y. Shih, J. Sick, M. T. Silbiger, Sudheesh Singanamalla, Leo Singer, P. H. Sladen, K. A. Sooley, S. Sornarajah, Ole Streicher, Peter Teuben, Scott Thomas, Grant R. Tremblay, J. Turner, V. Terrón, M. H. van Kerkwijk, A. de la Vega, Laura L. Watkins, B. A. Weaver, J. Whitmore, Julien Woillez, Victor Zabalza 
TL;DR: The Astropy project as discussed by the authors is an open-source and openly developed Python packages that provide commonly-needed functionality to the astronomical community, including the core package Astropy, which serves as the foundation for more specialized projects and packages.
Abstract: The Astropy project supports and fosters the development of open-source and openly-developed Python packages that provide commonly-needed functionality to the astronomical community. A key element of the Astropy project is the core package Astropy, which serves as the foundation for more specialized projects and packages. In this article, we provide an overview of the organization of the Astropy project and summarize key features in the core package as of the recent major release, version 2.0. We then describe the project infrastructure designed to facilitate and support development for a broader ecosystem of inter-operable packages. We conclude with a future outlook of planned new features and directions for the broader Astropy project.

2,286 citations

Journal ArticleDOI
TL;DR: In this article, the authors measured star formation rates (SFRs) of 50,000 optically selected galaxies in the local universe (z ≈ 0.1) by fitting the GALEX (ultraviolet) and SDSS photometry to a library of dustattenuated population synthesis models.
Abstract: We measure star formation rates (SFRs) of ≈50,000 optically selected galaxies in the local universe (z ≈ 0.1)—from gas-rich dwarfs to massive ellipticals. We obtain dust-corrected SFRs by fitting the GALEX (ultraviolet) and SDSS photometry to a library of dust-attenuated population synthesis models. For star-forming galaxies, our UV-based SFRs compare remarkably well with those from SDSS-measured emission lines (Hα). Deviations from perfect agreement are shown to be due to differences in the dust attenuation estimates. In contrast to Hα measurements, UV provides reliable SFRs for galaxies with weak Hα, and where Hα is contaminated with AGN emission (1/2 of the sample). Using full-SED SFRs, we calibrate a simple prescription that uses GALEX far- and near-UV magnitudes to produce dust-corrected SFRs for normal star-forming galaxies. The specific SFR is considered as a function of stellar mass for (1) star-forming galaxies with no AGNs, (2) those hosting an AGN, and (3) galaxies without Hα emission. We find that the three have distinct star formation histories, with AGNs lying intermediate between the star-forming and the quiescent galaxies. Star-forming galaxies without an AGN lie on a relatively narrow linear sequence. Remarkably, galaxies hosting a strong AGN appear to represent the massive continuation of this sequence. On the other hand, weak AGNs, while also massive, have lower SFRs, sometimes extending to the realm of quiescent galaxies. We propose an evolutionary sequence for massive galaxies that smoothly connects normal star-forming galaxies to quiescent galaxies via strong and weak AGNs. We confirm that some galaxies with no Hα show signs of star formation in the UV. We derive a cosmic star formation density at z = 0.1 with significantly smaller total error than previous measurements.

1,694 citations

Journal ArticleDOI
02 Nov 2007-Science
TL;DR: A 30-jansky dispersed burst, less than 5 milliseconds in duration, located 3° from the Small Magellanic Cloud is found, which implies that it was a singular event such as a supernova or coalescence of relativistic objects.
Abstract: Pulsar surveys offer a rare opportunity to monitor the radio sky for impulsive burst-like events with millisecond durations. We analyzed archival survey data and found a 30-jansky dispersed burst, less than 5 milliseconds in duration, located 3 degrees from the Small Magellanic Cloud. The burst properties argue against a physical association with our Galaxy or the Small Magellanic Cloud. Current models for the free electron content in the universe imply that the burst is less than 1 gigaparsec distant. No further bursts were seen in 90 hours of additional observations, which implies that it was a singular event such as a supernova or coalescence of relativistic objects. Hundreds of similar events could occur every day and, if detected, could serve as cosmological probes.

1,644 citations

Journal ArticleDOI
TL;DR: In this article, a new model for the distribution of free electrons in the Galaxy, the Magellanic Clouds, and the intergalactic medium (IGM) that can be used to estimate distances to real or simulated pulsars and fast radio bursts (FRBs) based on their dispersion measure (DM) was presented.
Abstract: We present a new model for the distribution of free electrons in the Galaxy, the Magellanic Clouds, and the intergalactic medium (IGM) that can be used to estimate distances to real or simulated pulsars and fast radio bursts (FRBs) based on their dispersion measure (DM). The Galactic model has an extended thick disk representing the so-called warm interstellar medium, a thin disk representing the Galactic molecular ring, spiral arms based on a recent fit to Galactic H II regions, a Galactic Center disk, and seven local features including the Gum Nebula, Galactic Loop I, and the Local Bubble. An offset of the Sun from the Galactic plane and a warp of the outer Galactic disk are included in the model. Parameters of the Galactic model are determined by fitting to 189 pulsars with independently determined distances and DMs. Simple models are used for the Magellanic Clouds and the IGM. Galactic model distances are within the uncertainty range for 86 of the 189 independently determined distances and within 20% of the nearest limit for a further 38 pulsars. We estimate that 95% of predicted Galactic pulsar distances will have a relative error of less than a factor of 0.9. The predictions of YMW16 are compared to those of the TC93 and NE2001 models showing that YMW16 performs significantly better on all measures. Timescales for pulse broadening due to interstellar scattering are estimated for (real or simulated) Galactic and Magellanic Cloud pulsars and FRBs.

801 citations

Related Papers (5)