scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A ferroelectric memristor

TL;DR: It is demonstrated that voltage-controlled domain configurations in ferroelectric tunnel barriers yield memristive behaviour with resistance variations exceeding two orders of magnitude and a 10 ns operation speed.
Abstract: Memristors are devices whose dynamic properties are of interest because they can mimic the operation of biological synapses. The demonstration that ferroelectric domains in tunnel junctions behave like memristors suggests new approaches for designing neuromorphic circuits.
Citations
More filters
Journal ArticleDOI
07 May 2015-Nature
TL;DR: The experimental implementation of transistor-free metal-oxide memristor crossbars, with device variability sufficiently low to allow operation of integrated neural networks, in a simple network: a single-layer perceptron (an algorithm for linear classification).
Abstract: Despite much progress in semiconductor integrated circuit technology, the extreme complexity of the human cerebral cortex, with its approximately 10(14) synapses, makes the hardware implementation of neuromorphic networks with a comparable number of devices exceptionally challenging. To provide comparable complexity while operating much faster and with manageable power dissipation, networks based on circuits combining complementary metal-oxide-semiconductors (CMOSs) and adjustable two-terminal resistive devices (memristors) have been developed. In such circuits, the usual CMOS stack is augmented with one or several crossbar layers, with memristors at each crosspoint. There have recently been notable improvements in the fabrication of such memristive crossbars and their integration with CMOS circuits, including first demonstrations of their vertical integration. Separately, discrete memristors have been used as artificial synapses in neuromorphic networks. Very recently, such experiments have been extended to crossbar arrays of phase-change memristive devices. The adjustment of such devices, however, requires an additional transistor at each crosspoint, and hence these devices are much harder to scale than metal-oxide memristors, whose nonlinear current-voltage curves enable transistor-free operation. Here we report the experimental implementation of transistor-free metal-oxide memristor crossbars, with device variability sufficiently low to allow operation of integrated neural networks, in a simple network: a single-layer perceptron (an algorithm for linear classification). The network can be taught in situ using a coarse-grain variety of the delta rule algorithm to perform the perfect classification of 3 × 3-pixel black/white images into three classes (representing letters). This demonstration is an important step towards much larger and more complex memristive neuromorphic networks.

2,222 citations

Journal ArticleDOI
01 Jun 2018
TL;DR: This Review Article examines the development of in-memory computing using resistive switching devices, where the two-terminal structure of the devices, theirresistive switching properties, and direct data processing in the memory can enable area- and energy-efficient computation.
Abstract: Modern computers are based on the von Neumann architecture in which computation and storage are physically separated: data are fetched from the memory unit, shuttled to the processing unit (where computation takes place) and then shuttled back to the memory unit to be stored. The rate at which data can be transferred between the processing unit and the memory unit represents a fundamental limitation of modern computers, known as the memory wall. In-memory computing is an approach that attempts to address this issue by designing systems that compute within the memory, thus eliminating the energy-intensive and time-consuming data movement that plagues current designs. Here we review the development of in-memory computing using resistive switching devices, where the two-terminal structure of the devices, their resistive switching properties, and direct data processing in the memory can enable area- and energy-efficient computation. We examine the different digital, analogue, and stochastic computing schemes that have been proposed, and explore the microscopic physical mechanisms involved. Finally, we discuss the challenges in-memory computing faces, including the required scaling characteristics, in delivering next-generation computing. This Review Article examines the development of in-memory computing using resistive switching devices.

1,193 citations

Journal ArticleDOI
TL;DR: In this paper, the recent progress of synaptic electronics is reviewed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing.
Abstract: In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented.

993 citations

Journal ArticleDOI
TL;DR: This Review provides an overview of memory devices and the key computational primitives enabled by these memory devices as well as their applications spanning scientific computing, signal processing, optimization, machine learning, deep learning and stochastic computing.
Abstract: Traditional von Neumann computing systems involve separate processing and memory units. However, data movement is costly in terms of time and energy and this problem is aggravated by the recent explosive growth in highly data-centric applications related to artificial intelligence. This calls for a radical departure from the traditional systems and one such non-von Neumann computational approach is in-memory computing. Hereby certain computational tasks are performed in place in the memory itself by exploiting the physical attributes of the memory devices. Both charge-based and resistance-based memory devices are being explored for in-memory computing. In this Review, we provide a broad overview of the key computational primitives enabled by these memory devices as well as their applications spanning scientific computing, signal processing, optimization, machine learning, deep learning and stochastic computing. This Review provides an overview of memory devices and the key computational primitives for in-memory computing, and examines the possibilities of applying this computing approach to a wide range of applications.

841 citations

Journal ArticleDOI
15 Jul 2015
TL;DR: A survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks is presented and the advantages and challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems are presented.
Abstract: A striking difference between brain-inspired neuromorphic processors and current von Neumann processor architectures is the way in which memory and processing is organized. As information and communication technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper, we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multineuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.

589 citations


Cites background from "A ferroelectric memristor"

  • ...Other approaches that also store memory state as resistance, but that exhibit a range of different behaviors include spin-transfer torque magnetic random access memories (STT–MRAMs) [146]–[148], ferroelectric devices [149], and phase change materials [150]–[152]....

    [...]

References
More filters
Journal ArticleDOI
01 May 2008-Nature
TL;DR: It is shown, using a simple analytical example, that memristance arises naturally in nanoscale systems in which solid-state electronic and ionic transport are coupled under an external bias voltage.
Abstract: Anyone who ever took an electronics laboratory class will be familiar with the fundamental passive circuit elements: the resistor, the capacitor and the inductor. However, in 1971 Leon Chua reasoned from symmetry arguments that there should be a fourth fundamental element, which he called a memristor (short for memory resistor). Although he showed that such an element has many interesting and valuable circuit properties, until now no one has presented either a useful physical model or an example of a memristor. Here we show, using a simple analytical example, that memristance arises naturally in nanoscale systems in which solid-state electronic and ionic transport are coupled under an external bias voltage. These results serve as the foundation for understanding a wide range of hysteretic current-voltage behaviour observed in many nanoscale electronic devices that involve the motion of charged atomic or molecular species, in particular certain titanium dioxide cross-point switches.

8,971 citations


"A ferroelectric memristor" refers background in this paper

  • ...Figure 4a–c (4d–f) also shows the fit of the experimental data by equation (2) (equation (1)) for negative (respectively, positive) applied voltage with amplitude 2....

    [...]

Journal ArticleDOI
TL;DR: In this article, the memristor is introduced as the fourth basic circuit element and an electromagnetic field interpretation of this relationship in terms of a quasi-static expansion of Maxwell's equations is presented.
Abstract: A new two-terminal circuit element-called the memristorcharacterized by a relationship between the charge q(t)\equiv \int_{-\infty}^{t} i(\tau) d \tau and the flux-linkage \varphi(t)\equiv \int_{- \infty}^{t} v(\tau) d \tau is introduced as the fourth basic circuit element. An electromagnetic field interpretation of this relationship in terms of a quasi-static expansion of Maxwell's equations is presented. Many circuit-theoretic properties of memistors are derived. It is shown that this element exhibits some peculiar behavior different from that exhibited by resistors, inductors, or capacitors. These properties lead to a number of unique applications which cannot be realized with RLC networks alone. Although a physical memristor device without internal power supply has not yet been discovered, operational laboratory models have been built with the help of active circuits. Experimental results are presented to demonstrate the properties and potential applications of memristors.

7,585 citations


"A ferroelectric memristor" refers background in this paper

  • ...Figure 4a–c (4d–f) also shows the fit of the experimental data by equation (2) (equation (1)) for negative (respectively, positive) applied voltage with amplitude 2....

    [...]

Journal ArticleDOI
TL;DR: A nanoscale silicon-based memristor device is experimentally demonstrated and it is shown that a hybrid system composed of complementary metal-oxide semiconductor neurons and Memristor synapses can support important synaptic functions such as spike timing dependent plasticity.
Abstract: A memristor is a two-terminal electronic device whose conductance can be precisely modulated by charge or flux through it. Here we experimentally demonstrate a nanoscale silicon-based memristor device and show that a hybrid system composed of complementary metal−oxide semiconductor neurons and memristor synapses can support important synaptic functions such as spike timing dependent plasticity. Using memristors as synapses in neuromorphic circuits can potentially offer both high connectivity and high density required for efficient computing.

3,650 citations


"A ferroelectric memristor" refers background in this paper

  • ...The nonlinear resistance R depends on V , t and σ that varies over time as described in equation (4)....

    [...]

  • ...In contrast to the situation for most other existing memristive systems, we thus reach a description of ferroelectricmemristors that goes beyond basic phenomenology and we provide the expression of the function f in equation (4) for the temporal evolution of the state parameter based on physical arguments....

    [...]

  • ...dσ/dt = f (σ ,V ,t ) (4) where σ represents one or several state variables, V is the voltage, i is the current, t is the time and R and f are system-dependent functions....

    [...]

  • ...Equations (3) and (4) impose a strict framework for resistive switching devices to truly behave as memristive systems....

    [...]

Journal ArticleDOI
TL;DR: Experimental evidence is provided to support this general model of memristive electrical switching in oxide systems, and micro- and nanoscale TiO2 junction devices with platinum electrodes that exhibit fast bipolar nonvolatile switching are built.
Abstract: Nanoscale metal/oxide/metal switches have the potential to transform the market for nonvolatile memory and could lead to novel forms of computing. However, progress has been delayed by difficulties in understanding and controlling the coupled electronic and ionic phenomena that dominate the behaviour of nanoscale oxide devices. An analytic theory of the ‘memristor’ (memory-resistor) was first developed from fundamental symmetry arguments in 1971, and we recently showed that memristor behaviour can naturally explain such coupled electron–ion dynamics. Here we provide experimental evidence to support this general model of memristive electrical switching in oxide systems. We have built micro- and nanoscale TiO2 junction devices with platinum electrodes that exhibit fast bipolar nonvolatile switching. We demonstrate that switching involves changes to the electronic barrier at the Pt/TiO2 interface due to the drift of positively charged oxygen vacancies under an applied electric field. Vacancy drift towards the interface creates conducting channels that shunt, or short-circuit, the electronic barrier to switch ON. The drift of vacancies away from the interface annilihilates such channels, recovering the electronic barrier to switch OFF. Using this model we have built TiO2 crosspoints with engineered oxygen vacancy profiles that predictively control the switching polarity and conductance. Nanoscale metal/oxide/metal devices that are capable of fast non-volatile switching have been built from platinum and titanium dioxide. The devices could have applications in ultrahigh density memory cells and novel forms of computing.

2,744 citations


"A ferroelectric memristor" refers background in this paper

  • ...Equations (3) and (4) impose a strict framework for resistive switching devices to truly behave as memristive systems....

    [...]

Journal ArticleDOI
01 Feb 1976
TL;DR: In this article, a broad generalization of memristors to an interesting class of nonlinear dynamical systems called memristive systems is introduced, which are unconventional in the sense that while they behave like resistive devices, they can be endowed with a rather exotic variety of dynamic characteristics.
Abstract: A broad generalization of memristors--a recently postulated circuit element--to an interesting class of nonlinear dynamical systems called memristive systems is introduced. These systems are unconventional in the sense that while they behave like resistive devices, they can be endowed with a rather exotic variety of dynamic characteristics. While possessing memory and exhibiting small-signal inductive or capacitive effects, they are incapable of energy discharge and they introduce no phase shift between the input and output waveforms. This zero-crossing property gives rise to a Lissajous figure which always passes through the origin. Memristive systems are hysteretic in the sense that their Lissajous figures vary with the excitation frequency. At very low frequencies, memristive systems are indistinguishable from nonlinear resistors while at extremely high frequencies, they reduce to linear resistors. These anomalous properties have misled and prevented the identification of many memristive devices and systems-including the thermistor, the Hodgkin-Huxley membrane circuit model, and the discharge tubes. Generic properties of memristive systems are derived and a canonic dynamical system model is presented along with an explicit algorithm for identifying the model parameters and functions.

2,159 citations