scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A fine structural analysis of intercellular junctions in the mouse liver.

01 May 1970-Journal of Cell Biology (The Rockefeller University Press)-Vol. 45, Iss: 2, pp 272-290
TL;DR: Acetone does not cause any detectable change in the structure of the zonula occludens, but the occluding junction becomes leaky to lanthanum following acetone treatment, and the effects of other reagents on the junctions are reported.
Abstract: Zonulae occludentes and gap junctions were examined both in the intact mouse liver and in a junction-rich membrane fraction from homogenized mouse liver. These preparations were visualized with the techniques of uranyl acetate staining en bloc, staining with colloidal lanthanum, negative staining with phosphotungstate, and freeze-cleaving. The zonula occludens is arranged as a meshwork of branching and anastomosing threadlike contacts sealing the lumen of the bile canaliculus from the liver intercellular space. The gap junction is characterized in section by a 20 A gap between the apposed junctional membrane outer leaflets, and permeation of this space with lanthanum or phosphotungstate reveals a polygonal lattice of subunits with a center-to-center spacing of 90–100 A. Freeze-cleaved gap junctions show a similar lattice. Extraction of junction-rich fractions with 60% aqueous acetone results in a disappearance of the 20 A gap in sectioned pellets and an inability to demonstrate the polygonal lattice with either the freeze-cleave or negative staining techniques. Extraction of the membranes with 50% acetone does not produce this effect. Thin-layer chromatography of the acetone extracts reveals a group of phospholipids in the 60% extract that are not detectable in the 50% extract. Acetone does not cause any detectable change in the structure of the zonula occludens, but the occluding junction becomes leaky to lanthanum following acetone treatment. The effects of other reagents on the junctions are reported.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Immunoblot analysis of Madin-Darby canine kidney cells demonstrates the presence of a polypeptide similar in molecular weight to that detected in liver, suggesting that this protein is potentially a ubiquitous component of all mammalian tight junctions.
Abstract: A tight junction-enriched membrane fraction has been used as immunogen to generate a monoclonal antiserum specific for this intercellular junction. Hybridomas were screened for their ability to both react on an immunoblot and localize to the junctional complex region on frozen sections of unfixed mouse liver. A stable hybridoma line has been isolated that secretes an antibody (R26.4C) that localizes in thin section images of isolated mouse liver plasma membranes to the points of membrane contact at the tight junction. This antibody recognizes a polypeptide of approximately 225,000 D, detectable in whole liver homogenates as well as in the tight junction-enriched membrane fraction. R26.4C localizes to the junctional complex region of a number of other epithelia, including colon, kidney, and testis, and to arterial endothelium, as assayed by immunofluorescent staining of cryostat sections of whole tissue. This antibody also stains the junctional complex region in confluent monolayers of the Madin-Darby canine kidney epithelial cell line. Immunoblot analysis of Madin-Darby canine kidney cells demonstrates the presence of a polypeptide similar in molecular weight to that detected in liver, suggesting that this protein is potentially a ubiquitous component of all mammalian tight junctions. The 225-kD tight junction-associated polypeptide is termed "ZO-1."

1,594 citations


Cites background from "A fine structural analysis of inter..."

  • ...The relationship of ZO-1 to the tight junction fibrils visualized in freeze-fracture (13, 26, 39) and in negatively stained preparations (15, 40) cannot be discerned from these ultra-...

    [...]

Journal ArticleDOI
TL;DR: Analysis of the mechanisms of channel assembly has revealed the selectivity of inter-connexin interactions and uncovered novel characteristics of the channel permeability and gating behavior.
Abstract: Adjacent cells share ions, second messengers and small metabolites through intercellular channels which are present in gap junctions. This type of intercellular communication permits coordinated cellular activity, a critical feature for organ homeostasis during development and adult life of multicellular organisms. Intercellular channels are structurally more complex than other ion channels, because a complete cell-to-cell channel spans two plasma membranes and results from the association of two half channels, or connexons, contributed separately by each of the two participating cells. Each connexon, in turn, is a multimeric assembly of protein subunits. The structural proteins comprising these channels, collectively called connexins, are members of a highly related multigene family consisting of at least 13 members. Since the cloning of the first connexin in 1986, considerable progress has been made in our understanding of the complex molecular switches that control the formation and permeability of intercellular channels. Analysis of the mechanisms of channel assembly has revealed the selectivity of inter-connexin interactions and uncovered novel characteristics of the channel permeability and gating behavior. Structure/function studies have begun to provide a molecular understanding of the significance of connexin diversity and demonstrated the unique regulation of connexins by tyrosine kinases and oncogenes. Finally, mutations in two connexin genes have been linked to human diseases. The development of more specific approaches (dominant negative mutants, knockouts, transgenes) to study the functional role of connexins in organ homeostasis is providing a new perception about the significance of connexin diversity and the regulation of intercellular communication.

1,320 citations

Journal ArticleDOI
16 Feb 1996-Science
TL;DR: Electron microscopic analysis of serial sections showed that during chain migration, neural precursors moved associated with each other and were not guided by radial glial or axonal fibers.
Abstract: In the brain of adult mice, cells that divide in the subventricular zone of the lateral ventricle migrate up to 5 millimeters to the olfactory bulb where they differentiate into neurons. These migrating cells were found to move as chains through a well-defined pathway, the rostral migratory stream. Electron microscopic analysis of serial sections showed that these chains contained only closely apposed, elongated neuroblasts connected by membrane specializations. A second cell type, which contained glial fibrillary acidic protein, ensheathed the chains of migrating neuroblasts. Thus, during chain migration, neural precursors moved associated with each other and were not guided by radial glial or axonal fibers.

1,312 citations

Book ChapterDOI
TL;DR: This chapter reviews the morphological information on intercellular junctions derived from thin-sectioning, negative staining and freeze-cleave techniques, as well as from x-ray diffraction and biochemical investigations, and correlates the structural parameters with known or proposed physiological functions.
Abstract: Publisher Summary Intercellular junctions are specialized regions of contact between the apposed plasma membranes of adjacent cells, and recent evidence suggests that they are essential for the development of multicellular organisms. They provide the structural means for groups of cells to interact in certain defined ways, and thereby enable them to create structures of higher order. This chapter reviews the morphological information on intercellular junctions derived from thin-sectioning, negative staining and freeze-cleave techniques, as well as from x-ray diffraction and biochemical investigations, and correlates the structural parameters with known or proposed physiological functions. The membrane structure of intercellular junctions is described. Membrane proteins can be divided into two groups: peripheral and integral. Peripheral membrane proteins are believed to be associated with the membrane surface, based on the observation that they are held to the membrane by rather weak noncovalent interactions, and are not strongly associated with membrane lipids. Only mild treatments, such as an increase in ionic strength of the medium or the addition of a chelating agent, are needed to dissociate them molecularly intact from the membrane. Furthermore, in the dissociated state they are relatively soluble in neutral aqueous buffers. In contrast, integral membrane proteins appear much more strongly bound to the lipid matrix, since they can be dissociated from the latter only by drastic treatments with chemicals such as detergents, protein denaturants, and organic solvents. The diversity in structure and function of intercellular junctions offers an exciting field for future research in which morphologists, physiologists, and biochemists should be able to make significant contributions to the knowledge of how individual cells interact to form structures of higher order.

1,292 citations

Journal ArticleDOI
TL;DR: Epithelia of intermediate permeabilities exhibited junctions with intermediate or variable morphology, finding that the zonula occludens from a "very leaky" epithelium, the proximal convoluted tubule of the mouse kidney, is extremely shallow in the apical-basal direction, and consists of five or more interconnected junctional strands interposed between luminal and lateral membrane surfaces.
Abstract: Epithelia vary with respect to transepithelial permeability. In those that are considered "leaky", a large fraction of the passive transepithelial flux appears to follow the paracellular route, passing across the zonulae occludentes and moving down the intercellular clefts. In "tight" epithelia, the resistance of the paracellular pathway to passive flux is greatly increased. To see whether differences in the morphology of the zonula occludens could contribute to this variability in leakiness among epithelia, replicas of zonulae occludentes in freeze-fractured material from a variety of tight and leaky epithelia were examined. The junctions appear as a branching and anastomosing network of strands or grooves on the A and B membrane fracture faces, respectively. It was found that the zonula occludens from a "very leaky" epithelium, the proximal convoluted tubule of the mouse kidney, is extremely shallow in the apical-basal direction, consisting in most places of only one junctional strand. In contrast, the "very tight" frog urinary bladder exhibits a zonula occludens that is relatively deep (>0.5 µm) in the apical-basal direction, and consists of five or more interconnected junctional strands interposed between luminal and lateral membrane surfaces. Epithelia of intermediate permeabilities exhibited junctions with intermediate or variable morphology. Toad urinary bladder, mouse stomach, jejunum, and distal tubule, rabbit gallbladder, and Necturus kidney and gallbladder were also examined, and the morphological data from these epithelia were compared to physiological data from the literature.

1,075 citations

References
More filters
Journal Article
TL;DR: Procedures are described for measuring protein in solution or after precipitation with acids or other agents, and for the determination of as little as 0.2 gamma of protein.

289,852 citations

Journal ArticleDOI
TL;DR: The early stages of absorption of intravenously injected horseradish peroxidase in proximal tubules of mouse kidney were studied with a new ultrastructural cytochemical technique, which gives sharp localization and is sensitive to protein transport.
Abstract: The early stages of absorption of intravenously injected horseradish peroxidase in proximal tubules of mouse kidney were studied with a new ultrastructural cytochemical technique. In animals killed as early as 90 sec after injection, reaction product was found on the brushborder membranes and in the apical tubular invaginations. From the latter structures it was transported to the apical vacuoles, in which it was progressively concentrated to form protein absorption droplets. The method, which employs 3,3'-diaminobenzidine as oxidizable substrate, gives sharp localization and is sensitive. This system is advantageous in studying the early stages of renal tubular protein absorption, since small amounts of protein on membranes and in tubules and vesicles can be detected easily. The method also appears promising for studying protein transport in a variety of other cells and tissues.

6,495 citations

Journal ArticleDOI
TL;DR: The tight junction is impervious to concentrated protein solutions and appears to function as a diffusion barrier or "seal," and the desmosome and probably also the zonula adhaerens may represent intercellular attachment devices.
Abstract: The epithelia of a number of glands and cavitary organs of the rat and guinea pig have been surveyed, and in all cases investigated, a characteristic tripartite junctional complex has been found between adjacent cells. Although the complex differs in precise arrangement from one organ to another, it has been regularly encountered in the mucosal epithelia of the stomach, intestine, gall bladder, uterus, and oviduct; in the glandular epithelia of the liver, pancreas, parotid, stomach, and thyroid; in the epithelia of pancreatic, hepatic, and salivary ducts; and finally, between the epithelial cells of the nephron (proximal and distal convolution, collecting ducts). The elements of the complex, identified as zonula occludens (tight junction), zonula adhaerens (intermediary junction), and macula adhaerens (desmosome), occupy a juxtaluminal position and succeed each other in the order given in an apical-basal direction. The zonula occludens (tight junction) is characterized by fusion of the adjacent cell membranes resulting in obliteration of the intercellular space over variable distances. Within the obliterated zone, the dense outer leaflets of the adjoining cell membranes converge to form a single intermediate line. A diffuse band of dense cytoplasmic material is often associated with this junction, but its development varies from one epithelium to another. The zonula adhaerens (intermediate junction) is characterized by the presence of an intercellular space ( approximately 200 A) occupied by homogeneous, apparently amorphous material of low density; by strict parallelism of the adjoining cell membranes over distances of 0.2 to 0.5 micro; and by conspicuous bands of dense material located in the subjacent cytoplasmic matrix. The desmosome or macula adhaerens is also characterized by the presence of an intercellular space ( approximately 240 A) which, in this case, contains a central disc of dense material; by discrete cytoplasmic plaques disposed parallel to the inner leaflet of each cell membrane; and by the presence of bundles of cytoplasmic fibrils converging on the plaques. The zonula occludens appears to form a continuous belt-like attachment, whereas the desmosome is a discontinuous, button-like structure. The zomula adhaerens is continuous in most epithelia but discontinuous in some. Observations made during experimental hemoglobinuria in rats showed that the hemoglobin, which undergoes enough concentration in the nephron lumina to act as an electron-opaque mass tracer, does not penetrate the intercellular spaces beyond the zonula occludens. Similar observations were made in pancreatic acini and ducts where discharged zymogen served as a mass tracer. Hence the tight junction is impervious to concentrated protein solutions and appears to function as a diffusion barrier or "seal." The desmosome and probably also the zonula adhaerens may represent intercellular attachment devices.

3,388 citations

Journal ArticleDOI
TL;DR: These findings localize, at a fine structural level, a "barrier" to the passage of peroxidase at the endothelium of vessels in the cerebral cortex in mice, particularly with reference to a recent study in which similar techniques were applied to capillaries in heart and skeletal muscle.
Abstract: Horseradish peroxidase was administered to mice by intravenous injection, and its distribution in cerebral cortex studied with a recently available technique for localizing peroxidase with the electron microscope. Brains were fixed by either immersion or vascular perfusion 10–60 min after administration of various doses of peroxidase. Exogenous peroxidase was localized in the lumina of blood vessels and in some micropinocytotic vesicles within endothelial cells; none was found beyond the vascular endothelium. Micropinocytotic vesicles were few in number and did not appear to transport peroxidase while tight junctions between endothelial cells were probably responsible for preventing its intercellular passage. Our findings therefore localize, at a fine structural level, a "barrier" to the passage of peroxidase at the endothelium of vessels in the cerebral cortex. The significance of these findings is discussed, particularly with reference to a recent study in which similar techniques were applied to capillaries in heart and skeletal muscle.

2,476 citations

Journal ArticleDOI
TL;DR: Endothelial and epithelial tight junctions occlude the interspaces between blood and parenchyma or cerebral ventricles, thereby constituting a structural basis for the blood-brain and blood-cerebrospinal fluid barriers.
Abstract: Certain junctions between ependymal cells, between astrocytes, and between some electrically coupled neurons have heretofore been regarded as tight, pentalaminar occlusions of the intercellular cleft. These junctions are now redefined in terms of their configuration after treatment of brain tissue in uranyl acetate before dehydration. Instead of a median dense lamina, they are bisected by a median gap 20–30 A wide which is continuous with the rest of the interspace. The patency of these "gap junctions" is further demonstrated by the penetration of horseradish peroxidase or lanthanum into the median gap, the latter tracer delineating there a polygonal substructure. However, either tracer can circumvent gap junctions because they are plaque-shaped rather than complete, circumferential belts. Tight junctions, which retain a pentalaminar appearance after uranyl acetate block treatment, are restricted primarily to the endothelium of parenchymal capillaries and the epithelium of the choroid plexus. They form rows of extensive, overlapping occlusions of the interspace and are neither circumvented nor penetrated by peroxidase and lanthanum. These junctions are morphologically distinguishable from the "labile" pentalaminar appositions which appear or disappear according to the preparative method and which do not interfere with the intercellular movement of tracers. Therefore, the interspaces of the brain are generally patent, allowing intercellular movement of colloidal materials. Endothelial and epithelial tight junctions occlude the interspaces between blood and parenchyma or cerebral ventricles, thereby constituting a structural basis for the blood-brain and blood-cerebrospinal fluid barriers.

2,345 citations


"A fine structural analysis of inter..." refers background in this paper

  • ...Hence, the lattice is more correctly described as polygonal ( 9 ),as opposed to hexagonal (37).The particles themselves have been described as "hexagons," but we have been unable to confirm that the particles are actually hexagonal in outline . The subunits in the gap junction, as seen with lanthanum, show a center-to-center spacing of 90-100 A . Other dimensions of the lattice have been previously published (37)....

    [...]

  • ...( 9 , 41) . All of these tissues, including mammalian...

    [...]