scispace - formally typeset
Open AccessJournal ArticleDOI

A flat Universe from high-resolution maps of the cosmic microwave background radiation

Reads0
Chats0
TLDR
The first images of resolved structure in the microwave background anisotropies over a significant part of the sky are reported, consistent with that expected for cold dark matter models in a flat (euclidean) Universe, as favoured by standard inflationary models.
Abstract
The blackbody radiation left over from the Big Bang has been transformed by the expansion of the Universe into the nearly isotropic 2.73 K cosmic microwave background. Tiny inhomogeneities in the early Universe left their imprint on the microwave background in the form of small anisotropies in its temperature. These anisotropies contain information about basic cosmological parameters, particularly the total energy density and curvature of the Universe. Here we report the first images of resolved structure in the microwave background anisotropies over a significant part of the sky. Maps at four frequencies clearly distinguish the microwave background from foreground emission. We compute the angular power spectrum of the microwave background, and find a peak at Legendre multipole l_(peak) = (197 ± 6), with an amplitude ΔT_(200) = (69 ± 8) µK. This is consistent with that expected for cold dark matter models in a flat (euclidean) Universe, as favoured by standard inflationary models.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Planck 2013 results. XVI. Cosmological parameters

Peter A. R. Ade, +327 more
TL;DR: In this paper, the authors present the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra, which are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations.
Journal ArticleDOI

HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere

TL;DR: This paper considers the requirements and implementation constraints on a framework that simultaneously enables an efficient discretization with associated hierarchical indexation and fast analysis/synthesis of functions defined on the sphere and demonstrates how these are explicitly satisfied by HEALPix.
Journal ArticleDOI

Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies

Daniel J. Eisenstein, +51 more
TL;DR: In this paper, a large-scale correlation function measured from a spectroscopic sample of 46,748 luminous red galaxies from the Sloan Digital Sky Survey is presented, which demonstrates the linear growth of structure by gravitational instability between z ≈ 1000 and the present and confirms a firm prediction of the standard cosmological theory.
References
More filters
Journal ArticleDOI

Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds

TL;DR: In this article, a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed, is presented.
Journal ArticleDOI

Efficient computation of CMB anisotropies in closed FRW models

TL;DR: In this paper, an efficient line-of-sight method was implemented to calculate the anisotropy and polarization of the cosmic microwave background for scalar and tensor modes in almost Friedmann-Robertson-Walker models with positive spatial curvature.
Journal ArticleDOI

Efficient Computation of CMB anisotropies in closed FRW models

TL;DR: In this paper, an efficient line-of-sight method was used to calculate the anisotropy and polarization of the cosmic microwave background for scalar and tensor modes in almost-Friedmann-Robertson-Walker models with positive spatial curvature.
Related Papers (5)