scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Flexible Semi-Interpenetrating Network-Enhanced Ionogel Polymer Electrolyte for Highly Stable and Safe Lithium Metal Batteries.

26 Aug 2021-ACS Applied Materials & Interfaces (American Chemical Society (ACS))-Vol. 13, Iss: 35, pp 41946-41955
TL;DR: In this article, an ionogel polymer electrolyte (IGPE) with a semi-interpenetrating cross-linked network structure was synthesized by UV-cross-linking to tackle this dilemma.
Abstract: An ionogel polymer electrolyte (IGPE), which combines the merits of high ionic conductivity and excellent safety property of a liquid electrolyte and a solid electrolyte, respectively, has shown great prospects in the application of a new generation of lithium secondary batteries. However, the increase in the ionic conductivity of IGPE will inevitably be at the expense of reduced mechanical strength, and this dilemma limits its application and market promotion. Here, an IGPE with a semi-interpenetrating cross-linked network structure was synthesized by UV-cross-linking to tackle this plight. The optimal sample ME82 shows an excellent ionic conductivity of 1.19 mS cm-1 at room temperature and robust mechanical strength (breaking strength: 1.55 MPa, elongation at break: 259%). Therefore, the assembled LiFePO4/ME82/Li cion cell displays an outstanding initial specific discharge capacity of 160.9 mAh g-1 at 55 °C 0.5 C, with a capacity retention of 94.00% after 200 cycles. In addition, ME82-based flexible batteries can withstand bending, folding, and even shearing abuse, which indicates that ME82 has application potentials in flexible electronic devices.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article , the mechanisms of the interfacial contact, ionic migration, and electrochemical reactions between composite polymer electrolytes and electrodes are highlighted, and a review of recent advances in interfacial constructions between polymer electrolyte and electrodes is presented.
Abstract: Recent advances in interfacial constructions between composite polymer electrolytes and electrodes are reviewed. Moreover, the mechanisms of the interfacial contact, ionic migration, and electrochemical reactions between them are highlighted.

30 citations

Journal ArticleDOI
TL;DR: In this article , the most recent advances of ionogel electrolytes that sprang up with the emerging demand and progress of safe lithium/sodium batteries are discussed based on the framework components and preparation methods.
Abstract: Alkali (lithium, sodium)‐based second batteries are considered one of the brightest candidates for energy‐storage applications in order to utilize the random and intermittent renewable energy to achieve carbon neutrality. Conventional lithium/sodium batteries containing liquid organic electrolytes are vulnerable to electrolytes leakage and even combustion, which hinders their large‐scale and reliable application. All‐solid‐state electrolytes which are considered to have better safety have been developed in recent years. However, most of them suffer from low ionic conductivity and large interfacial resistance with the electrode. Ionogel‐electrolyte membranes composed of ionic liquids and solid matrices, have attracted much attention because of their nonvolatility, nonflammability, and superior chemical and electrochemical properties. This review focuses on the most recent advances of ionogel electrolytes that sprang up with the emerging demand and progress of safe lithium/sodium batteries. The ionogel‐electrolyte membranes are discussed based on the framework components and preparation methods. Their structure and properties, including ionic conductivity, mechanical strength, electrochemical stabilities, and so on, are demonstrated in combination with their applications. The current challenges and insights on the future development of ionogel electrolytes for advanced safe lithium/sodium batteries are also proposed.

22 citations

Journal ArticleDOI
TL;DR: Inspired by composite electrolytes, an asymmetrical gel electrolyte (A-PGCE) consisting of cellulose membrane-supported gel and LLZTO-rich layer on one side is fabricated by a facile one-step in-situ polymerization method as discussed by the authors .

17 citations

Journal ArticleDOI
TL;DR: In this article , a review of the recent progress of ionogel electrolytes for lithium-ion batteries is presented, where the preparation strategies for ionogels based on different frameworks, namely inorganic matrix, organic matrix, and organic-inorganic hybrid matrix, are discussed.
Abstract: Incidents in the use of lithium-ion batteries are usually caused by the malfunction of flammable organic liquid electrolytes with poor thermal stability. Therefore, the development of noncombustible electrolytes is regarded as one of the most effective means to prevent the safety hazards of lithium-ion batteries. Ionic liquids have attracted much interest recently, mainly due to their high ionic conductivity, low volatility, and incombustibility. The application of ionic liquids to the preparation of quasi-solid-state gel electrolytes combines the advantages of ionic liquids and avoids the risks of organic liquid electrolytes. Therefore, the solid-state ionogels have been considered as a promising alternative electrolyte system, especially for the much-desired energy storage devices with higher energy density and flexibility. This review focuses on the recent progress of ionogel electrolytes for lithium-ion batteries. The preparation strategies for ionogel electrolytes based on different frameworks, namely inorganic matrix, organic matrix, and organic-inorganic hybrid matrix, are discussed. Subsequently, efforts to improve the properties of the ionogel electrolytes, including the ionic conductivity, mechanical properties, and lithium-ion transfer number, are summarized. Besides, the applications of ionogel electrolytes in high-voltage lithium-ion batteries and lithium metal batteries as well as the batteries under extreme environments are outlined. Finally, the perspectives in studying and improving the performances of ionogel electrolytes for advanced lithium-ion batteries are provided.

2 citations

Journal ArticleDOI
TL;DR: Li et al. as mentioned in this paper presented a double-network ionogel electrolyte (DNIE) through the preparation of interpenetrating polymer networks (IPNs), which exhibits good mechanical properties, excellent flexibility, nonflammability, high ionic conductivity (4.13×10−4 S cm−1 at room temperature), and the ability to suppress Li dendrite formation.
Abstract: The development of high-performance solid-state electrolytes to replace conventional liquid organic electrolytes has received intensive attention because of the improvements in the safety, flexibility, reliability, and cycling stability of lithium-ion batteries (LIBs). In this work, we present a double-network ionogel electrolyte (DNIE) through the preparation of interpenetrating polymer networks (IPNs). This DNIE exhibits good mechanical properties, excellent flexibility, nonflammability, high ionic conductivity (4.13×10−4 S cm−1 at room temperature), electrochemical stability (>4.8 V), and the ability to suppress Li dendrite formation. The Li/LiFePO4 cell assembled with the DNIE exhibits superior cycling performance while also delivering a steady high discharge capacity of 133.7 mAh g−1 and a Coulombic efficiency of 99.8 % after 220 cycles at a charge/discharge rate of 0.2 C. Importantly, the DNIE(200 %)-20 % electrolytes can be prepared on the surface of graphite anodes through in situ gelling, which can improve the stability of the active layer and the adhesion between the active layer and current collector in mechanical bending at different angles. After assembling into soft-packed batteries in the configuration of LiCoO2|DNIE(200 %)-20 %|graphite via the in situ gelling of DNIE(200 %)-20 % on the surface of the graphite electrode, the flexible batteries showed excellent cycling stability (capacity retention >98 %) even when folded more than 100 times.

1 citations

References
More filters
Journal ArticleDOI
TL;DR: New strategies are needed for batteries that go beyond powering hand-held devices, such as using electrode hosts with two-electron redox centers; replacing the cathode hosts by materials that undergo displacement reactions; and developing a Li(+) solid electrolyte separator membrane that allows an organic and aqueous liquid electrolyte on the anode and cathode sides, respectively.
Abstract: Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid–solution range. The solid–solution range, which is...

6,950 citations

Journal ArticleDOI
TL;DR: This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth, summarizing the theoretical and experimental achievements and endeavors to realize the practical applications of lithium metal batteries.
Abstract: The lithium metal battery is strongly considered to be one of the most promising candidates for high-energy-density energy storage devices in our modern and technology-based society. However, uncontrollable lithium dendrite growth induces poor cycling efficiency and severe safety concerns, dragging lithium metal batteries out of practical applications. This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth. First, the working principles and technical challenges of a lithium metal anode are underscored. Specific attention is paid to the mechanistic understandings and quantitative models for solid electrolyte interphase (SEI) formation, lithium dendrite nucleation, and growth. On the basis of previous theoretical understanding and analysis, recently proposed strategies to suppress dendrite growth of lithium metal anode and some other metal anodes are reviewed. A section dedicated to the potential of full-cell lithium metal batteries for practical applicatio...

3,812 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a background overview and discuss the state of the art, ion-transport mechanisms and fundamental properties of solid-state electrolyte materials of interest for energy storage applications.
Abstract: Solid-state electrolytes are attracting increasing interest for electrochemical energy storage technologies. In this Review, we provide a background overview and discuss the state of the art, ion-transport mechanisms and fundamental properties of solid-state electrolyte materials of interest for energy storage applications. We focus on recent advances in various classes of battery chemistries and systems that are enabled by solid electrolytes, including all-solid-state lithium-ion batteries and emerging solid-electrolyte lithium batteries that feature cathodes with liquid or gaseous active materials (for example, lithium–air, lithium–sulfur and lithium–bromine systems). A low-cost, safe, aqueous electrochemical energy storage concept with a ‘mediator-ion’ solid electrolyte is also discussed. Advanced battery systems based on solid electrolytes would revitalize the rechargeable battery field because of their safety, excellent stability, long cycle lives and low cost. However, great effort will be needed to implement solid-electrolyte batteries as viable energy storage systems. In this context, we discuss the main issues that must be addressed, such as achieving acceptable ionic conductivity, electrochemical stability and mechanical properties of the solid electrolytes, as well as a compatible electrolyte/electrode interface. This Review details recent advances in battery chemistries and systems enabled by solid electrolytes, including all-solid-state lithium-ion, lithium–air, lithium–sulfur and lithium–bromine batteries, as well as an aqueous battery concept with a mediator-ion solid electrolyte.

2,749 citations

Journal ArticleDOI
01 Dec 1987-Polymer
TL;DR: In this article, the transference number of lithium and trifluoromethanesulphonate ions in poly(ethylene oxide) at 90°C was measured and a mean value of 0.46 ± 0.02 was reported for lithium.

1,385 citations

Journal ArticleDOI
TL;DR: In this article, state-of-the-art polymer electrolytes are discussed with respect to their electrochemical and physical properties for their application in lithium polymer batteries, and the incorporation of inorganic fillers into GPEs to improve their mechanical strength as well as their transport properties and electrochemical properties is discussed.
Abstract: In this review, state-of-the-art polymer electrolytes are discussed with respect to their electrochemical and physical properties for their application in lithium polymer batteries. We divide polymer electrolytes into the two large categories of solid polymer electrolytes and gel polymer electrolytes (GPE). The performance requirements and ion transfer mechanisms of polymer electrolytes are presented at first. Then, solid polymer electrolyte systems, including dry solid polymer electrolytes, polymer-in-salt systems (rubbery electrolytes), and single-ion conducting polymer electrolytes, are described systematically. Solid polymer electrolytes still suffer from poor ionic conductivity, which is lower than 10−5 S cm−1. In order to further improve the ionic conductivity, numerous new types of lithium salt have been studied and inorganic fillers have been incorporated into solid polymer electrolytes. In the section on gel polymer electrolytes, the types of plasticizer and preparation methods of GPEs are summarized. Although the ionic conductivity of GPEs can reach 10−3 S cm−1, their low mechanical strength and poor interfacial properties are obstacles to their practical application. Significant attention is paid to the incorporation of inorganic fillers into GPEs to improve their mechanical strength as well as their transport properties and electrochemical properties.

969 citations