scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A global reference for human genetic variation.

Adam Auton1, Gonçalo R. Abecasis2, David Altshuler3, Richard Durbin4  +514 moreInstitutions (90)
01 Oct 2015-Nature (Nature Publishing Group)-Vol. 526, Iss: 7571, pp 68-74
TL;DR: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and has reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-generation sequencing, deep exome sequencing, and dense microarray genotyping.
Abstract: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.
Citations
More filters
Journal ArticleDOI
TL;DR: The hypothesis that eSTRs contribute to a range of human phenotypes should serve as a valuable resource for future studies of complex traits and is supported by whole-genome sequencing and expression data for 17 tissues.
Abstract: Short tandem repeats (STRs) have been implicated in a variety of complex traits in humans. However, genome-wide studies of the effects of STRs on gene expression thus far have had limited power to detect associations and provide insights into putative mechanisms. Here, we leverage whole-genome sequencing and expression data for 17 tissues from the Genotype-Tissue Expression Project to identify more than 28,000 STRs for which repeat number is associated with expression of nearby genes (eSTRs). We use fine-mapping to quantify the probability that each eSTR is causal and characterize the top 1,400 fine-mapped eSTRs. We identify hundreds of eSTRs linked with published genome-wide association study signals and implicate specific eSTRs in complex traits, including height, schizophrenia, inflammatory bowel disease and intelligence. Overall, our results support the hypothesis that eSTRs contribute to a range of human phenotypes, and our data should serve as a valuable resource for future studies of complex traits.

125 citations

Journal ArticleDOI
TL;DR: Patients with high genetic risk, regardless of clinical risk, had a high event rate and derived the greatest relative and absolute benefit from evolocumab, which mitigated this risk.
Abstract: Background: The ability of a genetic risk score to predict risk in established cardiovascular disease and identify individuals who derive greater benefit from PCSK9 (proprotein convertase subtilisi...

125 citations

Journal ArticleDOI
TL;DR: It is shown that the combination of deeper genotype imputation and extended phenotype availability make GS:SFHS an attractive resource to carry out association studies to gain insight into the genetic architecture of complex traits.
Abstract: The Generation Scotland: Scottish Family Health Study (GS:SFHS) is a family-based population cohort with DNA, biological samples, socio-demographic, psychological and clinical data from approximately 24,000 adult volunteers across Scotland. Although data collection was cross-sectional, GS:SFHS became a prospective cohort due to of the ability to link to routine Electronic Health Record (EHR) data. Over 20,000 participants were selected for genotyping using a large genome-wide array. GS:SFHS was analysed using genome-wide association studies (GWAS) to test the effects of a large spectrum of variants, imputed using the Haplotype Research Consortium (HRC) dataset, on medically relevant traits measured directly or obtained from EHRs. The HRC dataset is the largest available haplotype reference panel for imputation of variants in populations of European ancestry and allows investigation of variants with low minor allele frequencies within the entire GS:SFHS genotyped cohort. Genome-wide associations were run on 20,032 individuals using both genotyped and HRC imputed data. We present results for a range of well-studied quantitative traits obtained from clinic visits and for serum urate measures obtained from data linkage to EHRs collected by the Scottish National Health Service. Results replicated known associations and additionally reveal novel findings, mainly with rare variants, validating the use of the HRC imputation panel. For example, we identified two new associations with fasting glucose at variants near to Y_RNA and WDR4 and four new associations with heart rate at SNPs within CSMD1 and ASPH, upstream of HTR1F and between PROKR2 and GPCPD1. All were driven by rare variants (minor allele frequencies in the range of 0.08–1%). Proof of principle for use of EHRs was verification of the highly significant association of urate levels with the well-established urate transporter SLC2A9. GS:SFHS provides genetic data on over 20,000 participants alongside a range of phenotypes as well as linkage to National Health Service laboratory and clinical records. We have shown that the combination of deeper genotype imputation and extended phenotype availability make GS:SFHS an attractive resource to carry out association studies to gain insight into the genetic architecture of complex traits.

124 citations


Cites background from "A global reference for human geneti..."

  • ...Ancestry outliers who were more than six standard deviations away from the mean, in a principal component analysis of GS:SFHS [10] merged with 1092 individuals from the 1000 Genomes Project [11], were excluded....

    [...]

Journal ArticleDOI
TL;DR: This study assembled genome-wide data from over 2,800 individuals from over 260 distinct South Asian groups to identify 81 unique groups that descend from founder events more extreme than those in Ashkenazi Jews and Finns, which have high rates of recessive disease due to founder events.
Abstract: The more than 1.5 billion people who live in South Asia are correctly viewed not as a single large population but as many small endogamous groups. We assembled genome-wide data from over 2,800 individuals from over 260 distinct South Asian groups. We identified 81 unique groups, 14 of which had estimated census sizes of more than 1 million, that descend from founder events more extreme than those in Ashkenazi Jews and Finns, both of which have high rates of recessive disease due to founder events. We identified multiple examples of recessive diseases in South Asia that are the result of such founder events. This study highlights an underappreciated opportunity for decreasing disease burden among South Asians through discovery of and testing for recessive disease-associated genes.

124 citations

Posted ContentDOI
04 Oct 2016-bioRxiv
TL;DR: This pan-cancer analysis reveals that the prevalence of MSI events is highly variable within and across tumor types including some in which MSI is not typically examined, and proposes an exomebased predictive model for the MSI phenotype that achieves high sensitivity and specificity.
Abstract: Microsatellite instability (MSI) refers to the hypermutability of the cancer genome due to impaired DNA mismatch repair. Although MSI has been studied for decades, the large amount of sequencing data now available allows us to examine the molecular fingerprints of MSI in greater detail. Here, we analyze ~8000 exome and ~1000 whole-genome pairs across 23 cancer types. Our pan-cancer analysis reveals that the prevalence of MSI events is highly variable within and across tumor types including some in which MSI is not typically examined. We also identify genes in DNA repair and oncogenic pathways recurrently subject to MSI and uncover non-coding loci that frequently display MSI events. Finally, we propose an exome-based predictive model for the MSI phenotype that achieves high sensitivity and specificity. These results advance our understanding of the genomic drivers and consequences of MSI, and a comprehensive catalog of tumor-type specific MSI loci we have generated enables efficient panel-based MSI testing to identify patients who are likely to benefit from immunotherapy.

124 citations

References
More filters
Journal ArticleDOI
TL;DR: A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score.

88,255 citations

Journal ArticleDOI
TL;DR: SAMtools as discussed by the authors implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments.
Abstract: Summary: The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. It is flexible in style, compact in size, efficient in random access and is the format in which alignments from the 1000 Genomes Project are released. SAMtools implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments. Availability: http://samtools.sourceforge.net Contact: [email protected]

45,957 citations

Journal ArticleDOI
TL;DR: A new software suite for the comparison, manipulation and annotation of genomic features in Browser Extensible Data (BED) and General Feature Format (GFF) format, which allows the user to compare large datasets (e.g. next-generation sequencing data) with both public and custom genome annotation tracks.
Abstract: Motivation: Testing for correlations between different sets of genomic features is a fundamental task in genomics research. However, searching for overlaps between features with existing webbased methods is complicated by the massive datasets that are routinely produced with current sequencing technologies. Fast and flexible tools are therefore required to ask complex questions of these data in an efficient manner. Results: This article introduces a new software suite for the comparison, manipulation and annotation of genomic features in Browser Extensible Data (BED) and General Feature Format (GFF) format. BEDTools also supports the comparison of sequence alignments in BAM format to both BED and GFF features. The tools are extremely efficient and allow the user to compare large datasets (e.g. next-generation sequencing data) with both public and custom genome annotation tracks. BEDTools can be combined with one another as well as with standard UNIX commands, thus facilitating routine genomics tasks as well as pipelines that can quickly answer intricate questions of large genomic datasets. Availability and implementation: BEDTools was written in C++. Source code and a comprehensive user manual are freely available at http://code.google.com/p/bedtools

18,858 citations

Journal ArticleDOI
06 Sep 2012-Nature
TL;DR: The Encyclopedia of DNA Elements project provides new insights into the organization and regulation of the authors' genes and genome, and is an expansive resource of functional annotations for biomedical research.
Abstract: The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.

13,548 citations

Journal ArticleDOI
TL;DR: VCFtools is a software suite that implements various utilities for processing VCF files, including validation, merging, comparing and also provides a general Perl API.
Abstract: Summary: The variant call format (VCF) is a generic format for storing DNA polymorphism data such as SNPs, insertions, deletions and structural variants, together with rich annotations. VCF is usually stored in a compressed manner and can be indexed for fast data retrieval of variants from a range of positions on the reference genome. The format was developed for the 1000 Genomes Project, and has also been adopted by other projects such as UK10K, dbSNP and the NHLBI Exome Project. VCFtools is a software suite that implements various utilities for processing VCF files, including validation, merging, comparing and also provides a general Perl API. Availability: http://vcftools.sourceforge.net Contact: [email protected]

10,164 citations