scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A global reference for human genetic variation.

Adam Auton1, Gonçalo R. Abecasis2, David Altshuler3, Richard Durbin4  +514 moreInstitutions (90)
01 Oct 2015-Nature (Nature Publishing Group)-Vol. 526, Iss: 7571, pp 68-74
TL;DR: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and has reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-generation sequencing, deep exome sequencing, and dense microarray genotyping.
Abstract: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.
Citations
More filters
Journal ArticleDOI
TL;DR: Novel SNPs and genes associated with epigenetic age acceleration are identified, differences in the genetic architecture of Horvath-based and Hannum-based epigenetic ageing measures are highlighted, and different trajectories of age-related decline are highlighted.
Abstract: 'Epigenetic age acceleration' is a valuable biomarker of ageing, predictive of morbidity and mortality, but for which the underlying biological mechanisms are not well established. Two commonly used measures, derived from DNA methylation, are Horvath-based (Horvath-EAA) and Hannum-based (Hannum-EAA) epigenetic age acceleration. We conducted genome-wide association studies of Horvath-EAA and Hannum-EAA in 13,493 unrelated individuals of European ancestry, to elucidate genetic determinants of differential epigenetic ageing. We identified ten independent SNPs associated with Horvath-EAA, five of which are novel. We also report 21 Horvath-EAA-associated genes including several involved in metabolism (NHLRC, TPMT) and immune system pathways (TRIM59, EDARADD). GWAS of Hannum-EAA identified one associated variant (rs1005277), and implicated 12 genes including several involved in innate immune system pathways (UBE2D3, MANBA, TRIM46), with metabolic functions (UBE2D3, MANBA), or linked to lifespan regulation (CISD2). Both measures had nominal inverse genetic correlations with father’s age at death, a rough proxy for lifespan. Nominally significant genetic correlations between Hannum-EAA and lifestyle factors including smoking behaviours and education support the hypothesis that Hannum-based epigenetic ageing is sensitive to variations in environment, whereas Horvath-EAA is a more stable cellular ageing process. We identified novel SNPs and genes associated with epigenetic age acceleration, and highlighted differences in the genetic architecture of Horvath-based and Hannum-based epigenetic ageing measures. Understanding the biological mechanisms underlying individual differences in the rate of epigenetic ageing could help explain different trajectories of age-related decline.

80 citations


Cites methods from "A global reference for human geneti..."

  • ...The European subset of the 1000 Genomes phase 3 reference panel [70] was used to map LD....

    [...]

  • ...The European panel of the 1000 Genomes phase 3 data was used as a reference panel to account for LD [70]....

    [...]

Journal ArticleDOI
28 Sep 2018-Science
TL;DR: The exploration of the link between SD-ASM, stochastic variation in DNA methylation, and gene regulation requires deep coverage by WGBS across tissues and individuals and the context of other epigenomic marks and gene transcription.
Abstract: INTRODUCTION A majority of imbalances in DNA methylation between homologous chromosomes in humans are sequence-dependent; the DNA sequence differences between the two chromosomes cause differences in the methylation state of neighboring cytosines on the same chromosome. The analyses of this sequence-dependent allele-specific methylation (SD-ASM) traditionally involved measurement of average methylation levels across many cells. Detailed understanding of SD-ASM at the single-cell and single-chromosome levels is lacking. This gap in understanding may hide the connection between SD-ASM, ubiquitous stochastic cell-to-cell and chromosome-to-chromosome variation in DNA methylation, and the puzzling and evolutionarily conserved patterns of intermediate methylation at gene regulatory loci. RATIONALE Whole-genome bisulfite sequencing (WGBS) provides the ultimate single-chromosome level of resolution and comprehensive whole-genome coverage required to explore SD-ASM. However, the exploration of the link between SD-ASM, stochastic variation in DNA methylation, and gene regulation requires deep coverage by WGBS across tissues and individuals and the context of other epigenomic marks and gene transcription. RESULTS We constructed maps of allelic imbalances in DNA methylation, histone marks, and gene transcription in 71 epigenomes from 36 distinct cell and tissue types from 13 donors. Deep (1691-fold) combined WGBS read coverage across 49 methylomes revealed CpG methylation imbalances exceeding 30% differences at 5% of the loci, which is more conservative than previous estimates in the 8 to 10% range; a similar value (8%) is observed in our dataset when we lowered our threshold for detecting allelic imbalance to 20% methylation difference between the two alleles. Extensive sequence-dependent CpG methylation imbalances were observed at thousands of heterozygous regulatory loci. Stochastic switching, defined as random transitions between fully methylated and unmethylated states of DNA, occurred at thousands of regulatory loci bound by transcription factors (TFs). Our results explain the conservation of intermediate methylation states at regulatory loci by showing that the intermediate methylation reflects the relative frequencies of fully methylated and fully unmethylated epialleles. SD-ASM is explainable by different relative frequencies of methylated and unmethylated epialleles for the two alleles. The differences in epiallele frequency spectra of the alleles at thousands of TF-bound regulatory loci correlated with the differences in alleles’ affinities for TF binding, which suggests a mechanistic explanation for SD-ASM. We observed an excess of rare variants among those showing SD-ASM, which suggests that an average human genome harbors at least ~200 detrimental rare variants that also show SD-ASM. The methylome’s sensitivity to genetic variation is unevenly distributed across the genome, which is consistent with buffering of housekeeping genes against the effects of random mutations. By contrast, less essential genes with tissue-specific expression patterns show sensitivity, thus providing opportunity for evolutionary innovation through changes in gene regulation. CONCLUSION Analysis of allelic epigenome maps provides a unifying model that links sequence-dependent allelic imbalances of the epigenome, stochastic switching at gene regulatory loci, selective buffering of the regulatory circuitry against the effects of random mutations, and disease-associated genetic variation.

80 citations

Journal ArticleDOI
TL;DR: Progress in the field of variant effect research over the last decade is reviewed, break down the different approaches into their components, and compare methodological differences.
Abstract: Given the constantly improving cost and speed of genome sequencing, it is reasonable to expect that personal genomes will soon be known for many millions of humans. This stands in stark contrast with our limited ability to interpret the sequence variants which we find. Although it is, perhaps, easiest to interpret variants in coding regions, knowledge of functional impact is unknown for the vast majority of missense variants. While many computational approaches can predict the impact of coding variants, they are given a little weight in the current guidelines for interpreting clinical variants. Laboratory assays produce comparatively more trustworthy results, but until recently did not scale to the space of all possible mutations. The development of deep mutational scanning and other multiplexed assays of variant effect has now brought feasibility of this endeavour within view. Here, we review progress in this field over the last decade, break down the different approaches into their components, and compare methodological differences.

80 citations


Cites background from "A global reference for human geneti..."

  • ...Finally, a number of MAVE studies have been performed on viral 1 3 genes, by selecting for virus propagation efficiency (Bloom 2014; Thyagarajan and Bloom 2014)....

    [...]

Journal ArticleDOI
TL;DR: The IPDGC (The International Parkinson Disease Genomics Consortium) and EADB (Alzheimer Disease European DNA biobank) were incorrectly listed more than once in this article.
Abstract: The IPDGC (The International Parkinson Disease Genomics Consortium) and EADB (Alzheimer Disease European DNA biobank) are listed correctly as an author to the article, however, they were incorrectly listed more than once.

80 citations

Journal ArticleDOI
01 Apr 2022-Science
TL;DR: The T2T-CHM13 reference as discussed by the authors has been shown to universally improve read mapping and variant calling for 3202 and 17 globally diverse samples sequenced with short and long reads, respectively.
Abstract: Compared to its predecessors, the Telomere-to-Telomere CHM13 genome adds nearly 200 million base pairs of sequence, corrects thousands of structural errors, and unlocks the most complex regions of the human genome for clinical and functional study. We show how this reference universally improves read mapping and variant calling for 3202 and 17 globally diverse samples sequenced with short and long reads, respectively. We identify hundreds of thousands of variants per sample in previously unresolved regions, showcasing the promise of the T2T-CHM13 reference for evolutionary and biomedical discovery. Simultaneously, this reference eliminates tens of thousands of spurious variants per sample, including reduction of false positives in 269 medically relevant genes by up to a factor of 12. Because of these improvements in variant discovery coupled with population and functional genomic resources, T2T-CHM13 is positioned to replace GRCh38 as the prevailing reference for human genetics.

80 citations

References
More filters
Journal ArticleDOI
TL;DR: A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score.

88,255 citations

Journal ArticleDOI
TL;DR: SAMtools as discussed by the authors implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments.
Abstract: Summary: The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. It is flexible in style, compact in size, efficient in random access and is the format in which alignments from the 1000 Genomes Project are released. SAMtools implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments. Availability: http://samtools.sourceforge.net Contact: [email protected]

45,957 citations

Journal ArticleDOI
TL;DR: A new software suite for the comparison, manipulation and annotation of genomic features in Browser Extensible Data (BED) and General Feature Format (GFF) format, which allows the user to compare large datasets (e.g. next-generation sequencing data) with both public and custom genome annotation tracks.
Abstract: Motivation: Testing for correlations between different sets of genomic features is a fundamental task in genomics research. However, searching for overlaps between features with existing webbased methods is complicated by the massive datasets that are routinely produced with current sequencing technologies. Fast and flexible tools are therefore required to ask complex questions of these data in an efficient manner. Results: This article introduces a new software suite for the comparison, manipulation and annotation of genomic features in Browser Extensible Data (BED) and General Feature Format (GFF) format. BEDTools also supports the comparison of sequence alignments in BAM format to both BED and GFF features. The tools are extremely efficient and allow the user to compare large datasets (e.g. next-generation sequencing data) with both public and custom genome annotation tracks. BEDTools can be combined with one another as well as with standard UNIX commands, thus facilitating routine genomics tasks as well as pipelines that can quickly answer intricate questions of large genomic datasets. Availability and implementation: BEDTools was written in C++. Source code and a comprehensive user manual are freely available at http://code.google.com/p/bedtools

18,858 citations

Journal ArticleDOI
06 Sep 2012-Nature
TL;DR: The Encyclopedia of DNA Elements project provides new insights into the organization and regulation of the authors' genes and genome, and is an expansive resource of functional annotations for biomedical research.
Abstract: The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.

13,548 citations

Journal ArticleDOI
TL;DR: VCFtools is a software suite that implements various utilities for processing VCF files, including validation, merging, comparing and also provides a general Perl API.
Abstract: Summary: The variant call format (VCF) is a generic format for storing DNA polymorphism data such as SNPs, insertions, deletions and structural variants, together with rich annotations. VCF is usually stored in a compressed manner and can be indexed for fast data retrieval of variants from a range of positions on the reference genome. The format was developed for the 1000 Genomes Project, and has also been adopted by other projects such as UK10K, dbSNP and the NHLBI Exome Project. VCFtools is a software suite that implements various utilities for processing VCF files, including validation, merging, comparing and also provides a general Perl API. Availability: http://vcftools.sourceforge.net Contact: [email protected]

10,164 citations