scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

A group mobility model for ad hoc wireless networks

TL;DR: It is shown that group motion occurs frequently in ad hoc networks, and a novel group mobility model Reference Point Group Mobility (RPGM) is introduced to represent the relationship among mobile hosts.
Abstract: In this paper, we present a survey of various mobility models in both cellular networks and multi-hop networks We show that group motion occurs frequently in ad hoc networks, and introduce a novel group mobility model Reference Point Group Mobility (RPGM) to represent the relationship among mobile hosts RPGM can be readily applied to many existing applications Moreover, by proper choice of parameters, RPGM can be used to model several mobility models which were previously proposed One of the main themes of this paper is to investigate the impact of the mobility model on the performance of a specific network protocol or application To this end, we have applied our RPGM model to two different network protocol scenarios, clustering and routing, and have evaluated network performance under different mobility patterns and for different protocol implementations As expected, the results indicate that different mobility patterns affect the various protocols in different ways In particular, the ranking of routing algorithms is influenced by the choice of mobility pattern
Citations
More filters
01 Jan 2002
TL;DR: A survey of mobility models that are used in the simulations of ad hoc networks and illustrates how the performance results of an ad hoc network protocol drastically change as a result of changing the mobility model simulated.

4,618 citations


Cites background or methods from "A group mobility model for ad hoc w..."

  • ...The Exponential Correlated Random Mobility Model appears to theoretically describe all other mobility models....

    [...]

  • ...Unfortunately, it is not easy to create a given motion pattern by selecting appropriate values for (τ, σ) in the Exponential Correlated Random Mobility Model [15]....

    [...]

  • ...Exponential Correlated Random Mobility Model: A group mobility model that uses a motion function to create movements....

    [...]

  • ...According to [15], one of the first group mobility models to beproposed is the Exponential Correlated Random Mobility Model....

    [...]

  • ...1 Exponential Correlated Random Mobility Model According to [15], one of the first group mobility models to be proposed is the Exponential Correlated Random Mobility Model....

    [...]

Journal ArticleDOI
01 Aug 2002
TL;DR: In this paper, a survey of mobility models used in the simulations of ad hoc networks is presented, which illustrate the importance of choosing a mobility model in the simulation of an ad hoc network protocol.
Abstract: In the performance evaluation of a protocol for an ad hoc network, the protocol should be tested under realistic conditions including, but not limited to, a sensible transmission range, limited buffer space for the storage of messages, representative data traffic models, and realistic movements of the mobile users (i.e., a mobility model). This paper is a survey of mobility models that are used in the simulations of ad hoc networks. We describe several mobility models that represent mobile nodes whose movements are independent of each other (i.e., entity mobility models) and several mobility models that represent mobile nodes whose movements are dependent on each other (i.e., group mobility models). The goal of this paper is to present a number of mobility models in order to offer researchers more informed choices when they are deciding upon a mobility model to use in their performance evaluations. Lastly, we present simulation results that illustrate the importance of choosing a mobility model in the simulation of an ad hoc network protocol. Specifically, we illustrate how the performance results of an ad hoc network protocol drastically change as a result of changing the mobility model simulated.

4,391 citations

Book
12 Aug 2005
TL;DR: In this article, the authors state several problems related to topology control in wireless ad hoc and sensor networks, and survey state-of-the-art solutions which have been proposed to tackle them.
Abstract: Topology Control (TC) is one of the most important techniques used in wireless ad hoc and sensor networks to reduce energy consumption (which is essential to extend the network operational time) and radio interference (with a positive effect on the network traffic carrying capacity). The goal of this technique is to control the topology of the graph representing the communication links between network nodes with the purpose of maintaining some global graph property (e.g., connectivity), while reducing energy consumption and/or interference that are strictly related to the nodes' transmitting range. In this article, we state several problems related to topology control in wireless ad hoc and sensor networks, and we survey state-of-the-art solutions which have been proposed to tackle them. We also outline several directions for further research which we hope will motivate researchers to undertake additional studies in this field.

1,367 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a detailed analytical study of the spatial node distribution generated by random waypoint mobility and derived an exact equation of the asymptotically stationary distribution for movement on a line segment and an accurate approximation for a square area.
Abstract: The random waypoint model is a commonly used mobility model in the simulation of ad hoc networks It is known that the spatial distribution of network nodes moving according to this model is, in general, nonuniform However, a closed-form expression of this distribution and an in-depth investigation is still missing This fact impairs the accuracy of the current simulation methodology of ad hoc networks and makes it impossible to relate simulation-based performance results to corresponding analytical results To overcome these problems, we present a detailed analytical study of the spatial node distribution generated by random waypoint mobility More specifically, we consider a generalization of the model in which the pause time of the mobile nodes is chosen arbitrarily in each waypoint and a fraction of nodes may remain static for the entire simulation time We show that the structure of the resulting distribution is the weighted sum of three independent components: the static, pause, and mobility component This division enables us to understand how the model's parameters influence the distribution We derive an exact equation of the asymptotically stationary distribution for movement on a line segment and an accurate approximation for a square area The good quality of this approximation is validated through simulations using various settings of the mobility parameters In summary, this article gives a fundamental understanding of the behavior of the random waypoint model

1,122 citations

Proceedings ArticleDOI
26 Sep 2004
TL;DR: This paper introduces the sequential Monte Carlo Localization method and argues that it can exploit mobility to improve the accuracy and precision of localization.
Abstract: Many sensor network applications require location awareness, but it is often too expensive to include a GPS receiver in a sensor network node. Hence, localization schemes for sensor networks typically use a small number of seed nodes that know their location and protocols whereby other nodes estimate their location from the messages they receive. Several such localization techniques have been proposed, but none of them consider mobile nodes and seeds. Although mobility would appear to make localization more difficult, in this paper we introduce the sequential Monte Carlo Localization method and argue that it can exploit mobility to improve the accuracy and precision of localization. Our approach does not require additional hardware on the nodes and works even when the movement of seeds and nodes is uncontrollable. We analyze the properties of our technique and report experimental results from simulations. Our scheme outperforms the best known static localization schemes under a wide range of conditions.

1,114 citations


Cites methods from "A group mobility model for ad hoc w..."

  • ...In RPGM, the motion of a node is the combination of a group motion vector and a random motion vector....

    [...]

  • ...We use the Reference Point Group Mobility model (RPGM) [15] to investigate the effect of group behavior on our algorithm....

    [...]

References
More filters
Proceedings ArticleDOI
25 Feb 1999
TL;DR: An ad-hoc network is the cooperative engagement of a collection of mobile nodes without the required intervention of any centralized access point or existing infrastructure and the proposed routing algorithm is quite suitable for a dynamic self starting network, as required by users wishing to utilize ad- hoc networks.
Abstract: An ad-hoc network is the cooperative engagement of a collection of mobile nodes without the required intervention of any centralized access point or existing infrastructure. We present Ad-hoc On Demand Distance Vector Routing (AODV), a novel algorithm for the operation of such ad-hoc networks. Each mobile host operates as a specialized router, and routes are obtained as needed (i.e., on-demand) with little or no reliance on periodic advertisements. Our new routing algorithm is quite suitable for a dynamic self starting network, as required by users wishing to utilize ad-hoc networks. AODV provides loop-free routes even while repairing broken links. Because the protocol does not require global periodic routing advertisements, the demand on the overall bandwidth available to the mobile nodes is substantially less than in those protocols that do necessitate such advertisements. Nevertheless we can still maintain most of the advantages of basic distance vector routing mechanisms. We show that our algorithm scales to large populations of mobile nodes wishing to form ad-hoc networks. We also include an evaluation methodology and simulation results to verify the operation of our algorithm.

11,360 citations


"A group mobility model for ad hoc w..." refers methods in this paper

  • ...Recall that AODV does not maintain background routing tables....

    [...]

  • ...In AODV and HSR when communications are restricted within the scope of a group, the throughput improves....

    [...]

  • ...In Local Scope Model, AODV has very low overhead....

    [...]

  • ...Group mobility can improve performance considerably, especially if the routing protocol can take advantage of some of the group mobility features (as is the case of HSR and AODV with Local Scope Model)....

    [...]

  • ...In general, AODV provides a throughput level comparable to HSR. 4.3.3 Control Overhead of Routing Protocols Figure 10 shows the overhead in DSDV. DSDV has high control overhead because of the exchange of routing updates....

    [...]

01 Jan 1994
TL;DR: In this article, the authors present a protocol for routing in ad hoc networks that uses dynamic source routing, which adapts quickly to routing changes when host movement is frequent, yet requires little or no overhead during periods in which hosts move less frequently.
Abstract: An ad hoc network is a collection of wireless mobile hosts forming a temporary network without the aid of any established infrastructure or centralized administration. In such an environment, it may be necessary for one mobile host to enlist the aid of other hosts in forwarding a packet to its destination, due to the limited range of each mobile host’s wireless transmissions. This paper presents a protocol for routing in ad hoc networks that uses dynamic source routing. The protocol adapts quickly to routing changes when host movement is frequent, yet requires little or no overhead during periods in which hosts move less frequently. Based on results from a packet-level simulation of mobile hosts operating in an ad hoc network, the protocol performs well over a variety of environmental conditions such as host density and movement rates. For all but the highest rates of host movement simulated, the overhead of the protocol is quite low, falling to just 1% of total data packets transmitted for moderate movement rates in a network of 24 mobile hosts. In all cases, the difference in length between the routes used and the optimal route lengths is negligible, and in most cases, route lengths are on average within a factor of 1.01 of optimal.

8,614 citations

Book ChapterDOI
01 Jan 1996
TL;DR: This paper presents a protocol for routing in ad hoc networks that uses dynamic source routing that adapts quickly to routing changes when host movement is frequent, yet requires little or no overhead during periods in which hosts move less frequently.
Abstract: An ad hoc network is a collection of wireless mobile hosts forming a temporary network without the aid of any established infrastructure or centralized administration. In such an environment, it may be necessary for one mobile host to enlist the aid of other hosts in forwarding a packet to its destination, due to the limited range of each mobile host’s wireless transmissions. This paper presents a protocol for routing in ad hoc networks that uses dynamic source routing. The protocol adapts quickly to routing changes when host movement is frequent, yet requires little or no overhead during periods in which hosts move less frequently. Based on results from a packet-level simulation of mobile hosts operating in an ad hoc network, the protocol performs well over a variety of environmental conditions such as host density and movement rates. For all but the highest rates of host movement simulated, the overhead of the protocol is quite low, falling to just 1% of total data packets transmitted for moderate movement rates in a network of 24 mobile hosts. In all cases, the difference in length between the routes used and the optimal route lengths is negligible, and in most cases, route lengths are on average within a factor of 1.01 of optimal.

8,256 citations


"A group mobility model for ad hoc w..." refers background in this paper

  • ...Johnson’s Random Waypoint mobility model [12] is also an extension of random walk....

    [...]

Proceedings ArticleDOI
01 Oct 1994
TL;DR: The modifications address some of the previous objections to the use of Bellman-Ford, related to the poor looping properties of such algorithms in the face of broken links and the resulting time dependent nature of the interconnection topology describing the links between the Mobile hosts.
Abstract: An ad-hoc network is the cooperative engagement of a collection of Mobile Hosts without the required intervention of any centralized Access Point. In this paper we present an innovative design for the operation of such ad-hoc networks. The basic idea of the design is to operate each Mobile Host as a specialized router, which periodically advertises its view of the interconnection topology with other Mobile Hosts within the network. This amounts to a new sort of routing protocol. We have investigated modifications to the basic Bellman-Ford routing mechanisms, as specified by RIP [5], to make it suitable for a dynamic and self-starting network mechanism as is required by users wishing to utilize ad hoc networks. Our modifications address some of the previous objections to the use of Bellman-Ford, related to the poor looping properties of such algorithms in the face of broken links and the resulting time dependent nature of the interconnection topology describing the links between the Mobile Hosts. Finally, we describe the ways in which the basic network-layer routing can be modified to provide MAC-layer support for ad-hoc networks.

6,877 citations


"A group mobility model for ad hoc w..." refers background or methods in this paper

  • ...Distance Vector (DSDV) [ 18 ], Ad hoc On Demand Distance Vector Routing (AODV) [17], and the Hierarchical State Routing (HSR) [16]....

    [...]

  • ...We use DSDV [ 18 ], AODV [17] and HSR [16] for the evaluation and comparison of routing scheme performance....

    [...]

Proceedings ArticleDOI
25 Oct 1998
TL;DR: The results of a derailed packet-levelsimulationcomparing fourmulti-hopwirelessad hoc networkroutingprotocols, which cover a range of designchoices: DSDV,TORA, DSR and AODV are presented.
Abstract: An ad hoc networkis a collwtion of wirelessmobilenodes dynamically forminga temporarynetworkwithouttheuseof anyexistingnetworkirrfrastructureor centralizedadministration.Dueto the limitedtransmissionrange of ~vlrelessnenvorkinterfaces,multiplenetwork“hops”maybe neededfor onenodeto exchangedata ivithanotheracrox thenetwork.Inrecentyears, a ttiery of nelvroutingprotocols~geted specificallyat this environment havebeen developed.but little pcrfomrartwinformationon mch protocol and no ralistic performancecomparisonbehvwrrthem ISavailable. ~Is paper presentsthe results of a derailedpacket-levelsimulationcomparing fourmulti-hopwirelessad hoc networkroutingprotocolsthatcovera range of designchoices: DSDV,TORA, DSR and AODV. \Vehave extended the /~r-2networksimulatorto accuratelymodelthe MACandphysical-layer behaviorof the IEEE 802.1I wirelessLANstandard,includinga realistic wtrelesstransmissionchannelmodel, and present the resultsof simulations of net(vorksof 50 mobilenodes.

5,147 citations