scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A High Resolution Air Mass Transformation Model for Short-Range Weather Forecasting

01 Aug 1990-Monthly Weather Review (American Meteorological Society)-Vol. 118, Iss: 8, pp 1561-1575
TL;DR: In this paper, a high-resolution air mass transformation (AMT) model is proposed for short-range weather forecasts of the temperature and humidity profiles in the lower atmosphere, the structure of the boundary layer, the boundary layers height, and the amount of boundary layer clouds.
Abstract: This paper describes a high resolution air mass transformation (AMT) model. The model is intended for short-range weather forecasts of the temperature and humidity profiles in the lower atmosphere, the structure of the boundary layer, the boundary layer height, and the amount of boundary layer clouds. The AMT model consists of a one-dimensional, multilayer boundary layer model, which is advected along trajectories from a source region to a receptor point. The trajectories are calculated within a larger scale (limited area) model. The initial profiles for temperature and humidity are obtained from observed radiosondes. The paper describes the physical and dynamical background of the model. With the model we have made case studies of the development of stratocumulus over the North Sea, and have simulated the representation of clear skies over land. The output of the model is compared with the output of the ECMWF model and the current operational bulk AMT model. Sensitivity of the model to boundary ...
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a new parameterization of oceanic boundary layer mixing is developed to accommodate some of this physics, including a scheme for determining the boundary layer depth h, where the turbulent contribution to the vertical shear of a bulk Richardson number is parameterized.
Abstract: If model parameterizations of unresolved physics, such as the variety of upper ocean mixing processes, are to hold over the large range of time and space scales of importance to climate, they must be strongly physically based. Observations, theories, and models of oceanic vertical mixing are surveyed. Two distinct regimes are identified: ocean mixing in the boundary layer near the surface under a variety of surface forcing conditions (stabilizing, destabilizing, and wind driven), and mixing in the ocean interior due to internal waves, shear instability, and double diffusion (arising from the different molecular diffusion rates of heat and salt). Mixing schemes commonly applied to the upper ocean are shown not to contain some potentially important boundary layer physics. Therefore a new parameterization of oceanic boundary layer mixing is developed to accommodate some of this physics. It includes a scheme for determining the boundary layer depth h, where the turbulent contribution to the vertical shear of a bulk Richardson number is parameterized. Expressions for diffusivity and nonlocal transport throughout the boundary layer are given. The diffusivity is formulated to agree with similarity theory of turbulence in the surface layer and is subject to the conditions that both it and its vertical gradient match the interior values at h. This nonlocal “K profile parameterization” (KPP) is then verified and compared to alternatives, including its atmospheric counterparts. Its most important feature is shown to be the capability of the boundary layer to penetrate well into a stable thermocline in both convective and wind-driven situations. The diffusivities of the aforementioned three interior mixing processes are modeled as constants, functions of a gradient Richardson number (a measure of the relative importance of stratification to destabilizing shear), and functions of the double-diffusion density ratio, Rρ. Oceanic simulations of convective penetration, wind deepening, and diurnal cycling are used to determine appropriate values for various model parameters as weak functions of vertical resolution. Annual cycle simulations at ocean weather station Papa for 1961 and 1969–1974 are used to test the complete suite of parameterizations. Model and observed temperatures at all depths are shown to agree very well into September, after which systematic advective cooling in the ocean produces expected differences. It is argued that this cooling and a steady salt advection into the model are needed to balance the net annual surface heating and freshwater input. With these advections, good multiyear simulations of temperature and salinity can be achieved. These results and KPP simulations of the diurnal cycle at the Long-Term Upper Ocean Study (LOTUS) site are compared with the results of other models. It is demonstrated that the KPP model exchanges properties between the mixed layer and thermocline in a manner consistent with observations, and at least as well or better than alternatives.

3,756 citations

Journal ArticleDOI
TL;DR: The Coupled Ocean-Atmosphere Response Experiment (COARE) bulk algorithm was published in 1996, and it has become one of the most frequently used algorithms in the air-sea interaction community.
Abstract: In 1996, version 2.5 of the Coupled Ocean–Atmosphere Response Experiment (COARE) bulk algorithm was published, and it has become one of the most frequently used algorithms in the air–sea interaction community. This paper describes steps taken to improve the algorithm in several ways. The number of iterations to solve for stability has been shortened from 20 to 3, and adjustments have been made to the basic profile stability functions. The scalar transfer coefficients have been redefined in terms of the mixing ratio, which is the fundamentally conserved quantity, rather than the measured water vapor mass concentration. Both the velocity and scalar roughness lengths have been changed. For the velocity roughness, the original fixed value of the Charnock parameter has been replaced by one that increases with wind speeds of between 10 and 18 m s−1. The scalar roughness length parameterization has been simplified to fit both an early set of NOAA/Environmental Technology Laboratory (ETL) experiments and...

2,097 citations


Cites methods from "A High Resolution Air Mass Transfor..."

  • ...As with COARE 2.5, ZZD use the Kansas profile functions for near-neutral atmospheric stability, with the convective forms of Kader and Yaglom (1990) and the relations of Holtslag et al. (1990) in very stable conditions....

    [...]

Journal ArticleDOI
TL;DR: A new version of the RegCM regional climate modeling system, RegCM4, has been recently developed and made available for public use as discussed by the authors, which includes new land surface, planetary boundary layer, and air-sea flux schemes, a mixed convection and tropical band configuration, modifications to the pre-existing radiative transfer and boundary layer schemes, and a full upgrade of the model code towards improved flexibility, portability, and user friendliness.
Abstract: A new version of the RegCM regional climate modeling system, RegCM4, has been recently developed and made available for public use. Compared to previous versions, RegCM4 includes new land surface, planetary boundary layer, and air–sea flux schemes, a mixed convection and tropical band configuration, modifications to the pre-existing radiative transfer and boundary layer schemes, and a full upgrade of the model code towards improved flexibility, portability, and user friendliness. The model can be interactively coupled to a 1D lake model, a simplified aerosol scheme (including organic carbon, black carbon, SO4, dust, and sea spray), and a gas phase chemistry module (CBM-Z). After a general description of the model, a series of test experiments are presented over 4 domains prescribed under the CORDEX framework (Africa, South America, East Asia, and Europe) to provide illustrative examples of the model behavior and sensitivities under different climatic regimes. These experiments indicate that, overall, RegCM4 shows an improved performance in several respects compared to previous versions, although further testing by the user community is needed to fully explore its sensitivities and range of applications.

1,106 citations


Cites methods from "A High Resolution Air Mass Transfor..."

  • ...…options Dynamics • Hydrostatic, σ-vertical coordinate (Giorgi et al. 1993a) Radiative transfer • Modified CCM3 (Kiehl et al. 1996) PBL • Modified Holtslag (Holtslag et al. 1990) • UW-PBL (Bretherton et al. 2004) Cumulus convection • Simplified Kuo (Anthes et al. 1987) • Grell (Grell 1993) • MIT…...

    [...]

  • ...First, the scheme currently available in the RegCM system, that of Holtslag et al. (1990), underwent various modifications, and second a new PBL scheme, the University of Washington PBL (Grenier & Bretherton 2001, Bretherton et al. 2004), was implemented in the model....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the results of a local and a non-local scheme for vertical diffusion in the atmospheric boundary layer are compared within the context of a global climate model, which is an updated version of the NCAR Community Climate Model (CCM2).
Abstract: The results of a local and a nonlocal scheme for vertical diffusion in the atmospheric boundary layer are compared within the context of a global climate model. The global model is an updated version of the NCAR Community Climate Model (CCM2). The local diffusion scheme uses an eddy diffusivity determined independently at each point in the vertical, based on local vertical gradients of wind and virtual potential temperature, similar to the usual approach in global atmospheric models. The nonlocal scheme determines an eddy-diffusivity profile based on a diagnosed boundary-layer height and a turbulent velocity scale. It also incorporates nonlocal (vertical) transport effects for heat and moisture. The two diffusion schemes are summarized, and their results are compared with independent radiosonde observations for a number of locations. The focus herein is on the temperature and humidity structure over ocean, where the surface temperatures are specified, since the boundary-layer scheme interacts str...

1,078 citations