scispace - formally typeset
Journal ArticleDOI

A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction

Reads0
Chats0
TLDR
The IrOx/SrIrO3 catalyst outperforms known IrOx and ruthenium oxide (RuOx) systems, the only other OER catalysts that have reasonable activity in acidic electrolyte.
Abstract
Oxygen electrochemistry plays a key role in renewable energy technologies such as fuel cells and electrolyzers, but the slow kinetics of the oxygen evolution reaction (OER) limit the performance and commercialization of such devices. Here we report an iridium oxide/strontium iridium oxide (IrOx/SrIrO3) catalyst formed during electrochemical testing by strontium leaching from surface layers of thin films of SrIrO3 This catalyst has demonstrated specific activity at 10 milliamps per square centimeter of oxide catalyst (OER current normalized to catalyst surface area), with only 270 to 290 millivolts of overpotential for 30 hours of continuous testing in acidic electrolyte. Density functional theory calculations suggest the formation of highly active surface layers during strontium leaching with IrO3 or anatase IrO2 motifs. The IrOx/SrIrO3 catalyst outperforms known IrOx and ruthenium oxide (RuOx) systems, the only other OER catalysts that have reasonable activity in acidic electrolyte.

read more

Citations
More filters
Journal ArticleDOI

Combining theory and experiment in electrocatalysis: Insights into materials design

TL;DR: A unified theoretical framework highlights the need for catalyst design strategies that selectively stabilize distinct reaction intermediates relative to each other, and opens up opportunities and approaches to develop higher-performance electrocatalysts for a wide range of reactions.
Journal ArticleDOI

Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives

TL;DR: This review acquaints some materials for performing OER activity, in which the metal oxide materials build the basis of OER mechanism while non-oxide materials exhibit greatly promising performance toward overall water-splitting.
Journal ArticleDOI

Emerging Two-Dimensional Nanomaterials for Electrocatalysis

TL;DR: The fundamental relationships between electronic structure, adsorption energy, and apparent activity for a wide variety of 2D electrocatalysts are described with the goal of providing a better understanding of these emerging nanomaterials at the atomic level.
Journal ArticleDOI

Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review

TL;DR: In this paper, a review article summarizes the very recent efforts in the field of OER electrocatalysis along with the faced challenges and solutions to these challenges also outline with appropriate examples of scientific literatures.
Journal ArticleDOI

A review on fundamentals for designing oxygen evolution electrocatalysts

TL;DR: This article summarized the recent progress in understanding OER mechanisms, which include the conventional adsorbate evolution mechanism (AEM) and lattice-oxygen-mediated mechanism (LOM) from both theoretical and experimental aspects, and introduced strategies to reduce overpotential.
References
More filters
Journal ArticleDOI

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials

TL;DR: QUANTUM ESPRESSO as discussed by the authors is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave).
Journal ArticleDOI

Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals

TL;DR: In this paper, a simple formulation of a generalized gradient approximation for the exchange and correlation energy of electrons has been proposed by Perdew, Burke, and Ernzerhof (PBE), which improves the chemisorption energy of atoms and molecules on transition-metal surfaces.
Journal ArticleDOI

A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles.

TL;DR: The high activity of BSCF was predicted from a design principle established by systematic examination of more than 10 transition metal oxides, which showed that the intrinsic OER activity exhibits a volcano-shaped dependence on the occupancy of the 3d electron with an eg symmetry of surface transition metal cations in an oxide.
Journal ArticleDOI

A comprehensive review on PEM water electrolysis

TL;DR: In this paper, a review of the state-of-the-art for PEM electrolysis technology is presented, which provides an insightful overview of the research that is already done and the challenges that still exist.
Related Papers (5)