scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A highly selective and stable ZnO-ZrO 2 solid solution catalyst for CO 2 hydrogenation to methanol.

01 Oct 2017-Science Advances (American Association for the Advancement of Science)-Vol. 3, Iss: 10
TL;DR: Experimental and theoretical results indicate that the synergetic effect between Zn and Zr sites results in the excellent performance of the ZnO-ZrO2 solid solution catalyst, which can achieve methanol selectivity of up to 86 to 91% with CO2 single-pass conversion of more than 10% under reaction conditions.
Abstract: Although methanol synthesis via CO hydrogenation has been industrialized, CO2 hydrogenation to methanol still confronts great obstacles of low methanol selectivity and poor stability, particularly for supported metal catalysts under industrial conditions. We report a binary metal oxide, ZnO-ZrO2 solid solution catalyst, which can achieve methanol selectivity of up to 86 to 91% with CO2 single-pass conversion of more than 10% under reaction conditions of 5.0 MPa, 24,000 ml/(g hour), H2/CO2 = 3:1 to 4:1, 320° to 315°C. Experimental and theoretical results indicate that the synergetic effect between Zn and Zr sites results in the excellent performance. The ZnO-ZrO2 solid solution catalyst shows high stability for at least 500 hours on stream and is also resistant to sintering at higher temperatures. Moreover, no deactivation is observed in the presence of 50 ppm SO2 or H2S in the reaction stream.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive overview of the recent advances in energy-efficient CO2 conversion, especially focusing on structure-activity relationship, is provided as well as the importance of combining catalytic measurements, in situ characterization, and theoretical studies in understanding reaction mechanisms and identifying key descriptors for designing improved catalysts.
Abstract: The utilization of fossil fuels has enabled an unprecedented era of prosperity and advancement of well-being for human society. However, the associated increase in anthropogenic carbon dioxide (CO2) emissions can negatively affect global temperatures and ocean acidity. Moreover, fossil fuels are a limited resource and their depletion will ultimately force one to seek alternative carbon sources to maintain a sustainable economy. Converting CO2 into value-added chemicals and fuels, using renewable energy, is one of the promising approaches in this regard. Major advances in energy-efficient CO2 conversion can potentially alleviate CO2 emissions, reduce the dependence on nonrenewable resources, and minimize the environmental impacts from the portions of fossil fuels displaced. Methanol (CH3OH) is an important chemical feedstock and can be used as a fuel for internal combustion engines and fuel cells, as well as a platform molecule for the production of chemicals and fuels. As one of the promising approaches, thermocatalytic CO2 hydrogenation to CH3OH via heterogeneous catalysis has attracted great attention in the past decades. Major progress has been made in the development of various catalysts including metals, metal oxides, and intermetallic compounds. In addition, efforts are also put forth to define catalyst structures in nanoscale by taking advantage of nanostructured materials, which enables the tuning of the catalyst composition and modulation of surface structures and potentially endows more promising catalytic performance in comparison to the bulk materials prepared by traditional methods. Despite these achievements, significant challenges still exist in developing robust catalysts with good catalytic performance and long-term stability. In this review, we will provide a comprehensive overview of the recent advances in this area, especially focusing on structure-activity relationship, as well as the importance of combining catalytic measurements, in situ characterization, and theoretical studies in understanding reaction mechanisms and identifying key descriptors for designing improved catalysts.

639 citations

Journal ArticleDOI
TL;DR: Recent advances in breaking the selectivity limitation of Fischer-Tropsch synthesis by using a reaction coupling strategy for hydrogenation of both CO and CO2 into C2+ hydrocarbons, which include key building-block chemicals and liquid fuels.
Abstract: Catalytic transformations of syngas (a mixture of H2 and CO), which is one of the most important C1-chemistry platforms, and CO2, a greenhouse gas released from human industrial activities but also a candidate of abundant carbon feedstock, into chemicals and fuels have attracted much attention in recent years. Fischer-Tropsch (FT) synthesis is a classic route of syngas chemistry, but the product selectivity of FT synthesis is limited by the Anderson-Schulz-Flory (ASF) distribution. The hydrogenation of CO2 into C2+ hydrocarbons involving C-C bond formation encounters similar selectivity limitation. The present article focuses on recent advances in breaking the selectivity limitation by using a reaction coupling strategy for hydrogenation of both CO and CO2 into C2+ hydrocarbons, which include key building-block chemicals, such as lower (C2-C4) olefins and aromatics, and liquid fuels, such as gasoline (C5-C11 hydrocarbons), jet fuel (C8-C16 hydrocarbons) and diesel fuel (C10-C20 hydrocarbons). The design and development of novel bifunctional or multifunctional catalysts, which are composed of metal, metal carbide or metal oxide nanoparticles and zeolites, for hydrogenation of CO and CO2 to C2+ hydrocarbons beyond FT synthesis will be reviewed. The key factors in controlling catalytic performances, such as the catalyst component, the acidity and mesoporosity of the zeolite and the proximity between the metal/metal carbide/metal oxide and zeolite, will be analysed to provide insights for designing efficient bifunctional or multifunctional catalysts. The reaction mechanism, in particular the activation of CO and CO2, the reaction pathway and the reaction intermediate, will be discussed to provide a deep understanding of the chemistry of the new C1 chemistry routes beyond FT synthesis.

625 citations

Journal ArticleDOI
TL;DR: This critical review provides a comprehensive view of the significant advances in heterogeneous catalysis for methanol synthesis through direct hydrogenation of CO2 through noble metal-based catalysts, bimetallic catalysts including alloys and intermetallic compounds, as well as hybrid oxides and other novel catalytic systems.
Abstract: The ever-increasing amount of anthropogenic carbon dioxide (CO2) emissions has resulted in great environmental impacts. The selective hydrogenation of CO2 to methanol, the first target in the liquid sunshine vision, not only effectively mitigates the CO2 emissions, but also produces value-added chemicals and fuels. This critical review provides a comprehensive view of the significant advances in heterogeneous catalysis for methanol synthesis through direct hydrogenation of CO2. The challenges in thermodynamics are addressed first. Then the progress in conventional Cu-based catalysts is discussed in detail, with an emphasis on the structural, chemical, and electronic promotions of supports and promoters, the preparation methods and precursors of Cu-based catalysts, as well as the proposed models for active sites. We also provide an overview of the progress in noble metal-based catalysts, bimetallic catalysts including alloys and intermetallic compounds, as well as hybrid oxides and other novel catalytic systems. The developments in mechanistic aspects, reaction conditions and optimization, as well as reactor designs and innovations are also included. The advances in industrial applications for methanol synthesis are further highlighted. Finally, a summary and outlook are provided.

458 citations

Journal ArticleDOI
TL;DR: Developing sustainable energy resources is one of the most urgent missions for human beings as increasing energy demand is in drastic conflict with limited global fossil fuels.
Abstract: Developing sustainable energy resources is one of the most urgent missions for human beings as increasing energy demand is in drastic conflict with limited global fossil fuels. Among the various types of sustainable energy resources, solar energy is considered to be promising due to its inexhaustible supply, universality, high capacity, and environmental friendliness. However, natural solar irradiation is decentralized, intermittent and fluctuates constantly. Therefore, effective utilization of solar energy in a clean, economic, and convenient way remains a grand challenge.

386 citations

Journal ArticleDOI
TL;DR: Improved understanding of the structure-performance relationships in 2D-related catalysts which is achievable through the application of modern in situ characterization techniques, practical photo/photothermal/photoelectrochemical technologies for CO and CO2 reduction to high-valuable products such as olefins could be realized in the not-too-distant future.
Abstract: The discovery of improved chemical processes for CO and CO2 hydrogenation to valuable hydrocarbon fuels and alcohols is of paramount importance for the chemical industry. Such technologies have the potential to reduce anthropogenic CO2 emissions by adding value to a waste stream, whilst also reducing our consumption of fossil fuels. Current thermal catalytic technologies available for CO and CO2 hydrogenation are demanding in terms of energy input. Various alternative technologies are now being developed for COx hydrogenation, with solar-driven processes over two-dimensional (2D) and 2D-related composite materials being particularly attractive due to the abundance of solar energy on Earth and also the high selectivity of defect-engineered 2D materials towards specific valuable products under very mild reaction conditions. This review showcases recent advances in the solar-driven COx reduction to hydrocarbons over 2D-based materials. Optimization of 2D catalyst performance demands interdisciplinary research that embraces catalyst electronic structure manipulation and morphology control, surface/interface engineering, reactor engineering and density functional theory modelling studies. Through improved understanding of the structure–performance relationships in 2D-related catalysts which is achievable through the application of modern in situ characterization techniques, practical photo/photothermal/photoelectrochemical technologies for CO and CO2 reduction to high-valuable products such as olefins could be realized in the not-too-distant future.

305 citations

References
More filters
Journal ArticleDOI
TL;DR: An efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set is presented and the application of Pulay's DIIS method to the iterative diagonalization of large matrices will be discussed.
Abstract: We present an efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set. In the first part the application of Pulay's DIIS method (direct inversion in the iterative subspace) to the iterative diagonalization of large matrices will be discussed. Our approach is stable, reliable, and minimizes the number of order ${\mathit{N}}_{\mathrm{atoms}}^{3}$ operations. In the second part, we will discuss an efficient mixing scheme also based on Pulay's scheme. A special ``metric'' and a special ``preconditioning'' optimized for a plane-wave basis set will be introduced. Scaling of the method will be discussed in detail for non-self-consistent and self-consistent calculations. It will be shown that the number of iterations required to obtain a specific precision is almost independent of the system size. Altogether an order ${\mathit{N}}_{\mathrm{atoms}}^{2}$ scaling is found for systems containing up to 1000 electrons. If we take into account that the number of k points can be decreased linearly with the system size, the overall scaling can approach ${\mathit{N}}_{\mathrm{atoms}}$. We have implemented these algorithms within a powerful package called VASP (Vienna ab initio simulation package). The program and the techniques have been used successfully for a large number of different systems (liquid and amorphous semiconductors, liquid simple and transition metals, metallic and semiconducting surfaces, phonons in simple metals, transition metals, and semiconductors) and turned out to be very reliable. \textcopyright{} 1996 The American Physical Society.

81,985 citations

Journal ArticleDOI
TL;DR: The effective ionic radii of Shannon & Prewitt [Acta Cryst. (1969), B25, 925-945] are revised to include more unusual oxidation states and coordinations as mentioned in this paper.
Abstract: The effective ionic radii of Shannon & Prewitt [Acta Cryst. (1969), B25, 925-945] are revised to include more unusual oxidation states and coordinations. Revisions are based on new structural data, empirical bond strength-bond length relationships, and plots of (1) radii vs volume, (2) radii vs coordination number, and (3) radii vs oxidation state. Factors which affect radii additivity are polyhedral distortion, partial occupancy of cation sites, covalence, and metallic character. Mean Nb5+-O and Mo6+-O octahedral distances are linearly dependent on distortion. A decrease in cation occupancy increases mean Li+-O, Na+-O, and Ag+-O distances in a predictable manner. Covalence strongly shortens Fe2+-X, Co2+-X, Ni2+-X, Mn2+-X, Cu+-X, Ag+-X, and M-H- bonds as the electronegativity of X or M decreases. Smaller effects are seen for Zn2+-X, Cd2+-X, In2+-X, pb2+-X, and TI+-X. Bonds with delocalized electrons and therefore metallic character, e.g. Sm-S, V-S, and Re-O, are significantly shorter than similar bonds with localized electrons.

51,997 citations


"A highly selective and stable ZnO-Z..." refers background in this paper

  • ...82 Å) (26), the interplanar spacing would be decreased when Zn is incorporated into the lattice of ZrO2....

    [...]

Journal ArticleDOI
TL;DR: An improved way of estimating the local tangent in the nudged elastic band method for finding minimum energy paths is presented, and examples given where a complementary method, the dimer method, is used to efficiently converge to the saddle point.
Abstract: An improved way of estimating the local tangent in the nudged elastic band method for finding minimum energy paths is presented. In systems where the force along the minimum energy path is large compared to the restoring force perpendicular to the path and when many images of the system are included in the elastic band, kinks can develop and prevent the band from converging to the minimum energy path. We show how the kinks arise and present an improved way of estimating the local tangent which solves the problem. The task of finding an accurate energy and configuration for the saddle point is also discussed and examples given where a complementary method, the dimer method, is used to efficiently converge to the saddle point. Both methods only require the first derivative of the energy and can, therefore, easily be applied in plane wave based density-functional theory calculations. Examples are given from studies of the exchange diffusion mechanism in a Si crystal, Al addimer formation on the Al(100) surfa...

6,825 citations


"A highly selective and stable ZnO-Z..." refers methods in this paper

  • ...The enthalpy, entropy, and Gibbs free energy of each species were calculated by vibrational frequency analysis based on harmonic normal mode approximation using the finite difference method in VASP....

    [...]

  • ...Spin-polarized DFT calculations were performed with the VASP 5.3.5 package (45)....

    [...]

  • ...The minimum-energy reaction pathways and the corresponding transition states were determined using the nudged elastic bandmethod with improved tangent estimate (CI-NEB) implemented in VASP (47)....

    [...]

  • ...Frequency analysis of the stationary points was performed by means of the finite difference method as implemented in VASP 5.3.5....

    [...]

Journal ArticleDOI
TL;DR: The hole model provides a more detailed test of these energy functionals, and also predicts the observable electron-electron structure factor.
Abstract: We construct a generalized gradient approximation (GGA) for the density ${\mathit{n}}_{\mathrm{xc}}$(r,r+u) at position r+u of the exchange-correlation hole surrounding an electron at r, or more precisely for its system and spherical average 〈${\mathit{n}}_{\mathrm{xc}}$(u)〉=(4\ensuremath{\pi}${)}^{\mathrm{\ensuremath{-}}1}$\ensuremath{\int}d${\mathrm{\ensuremath{\Omega}}}_{\mathit{u}}$ ${\mathit{N}}^{\mathrm{\ensuremath{-}}1}$\ensuremath{\int}${\mathit{d}}^{3}$r n(r)${\mathit{n}}_{\mathrm{xc}}$(r,r+u). Starting from the second-order density gradient expansion, which involves the local spin densities ${\mathit{n}}_{\mathrm{\ensuremath{\uparrow}}}$(r),${\mathit{n}}_{\mathrm{\ensuremath{\downarrow}}}$(r) and their gradients \ensuremath{ abla}${\mathit{n}}_{\mathrm{\ensuremath{\uparrow}}}$(r),\ensuremath{ abla}${\mathit{n}}_{\mathrm{\ensuremath{\downarrow}}}$(r), we cut off the spurious large-u contributions to restore those exact conditions on the hole that the local spin density (LSD) approximation respects. Our GGA hole recovers the Perdew-Wang 1991 and Perdew-Burke-Ernzerhof GGA's for the exchange-correlation energy, which therefore respect the same powerful hole constraints as LSD. When applied to real systems, our hole model provides a more detailed test of these energy functionals, and also predicts the observable electron-electron structure factor. \textcopyright{} 1996 The American Physical Society.

5,341 citations


"A highly selective and stable ZnO-Z..." refers methods in this paper

  • ...The generalized gradient approximation based on Perdew-Burke-Ernzerhof exchange-correlation functional and projected augmented wave method accounting for valence-core interactions were used throughout (46)....

    [...]

Journal ArticleDOI
18 May 2012-Science
TL;DR: This work shows how to identify the crucial atomic structure motif for the industrial Cu/ZnO/Al2O3 methanol synthesis catalyst by using a combination of experimental evidence from bulk, surface-sensitive, and imaging methods collected on real high-performance catalytic systems in combination with density functional theory calculations.
Abstract: Unlike homogeneous catalysts, heterogeneous catalysts that have been optimized through decades are typically so complex and hard to characterize that the nature of the catalytically active site is not known. This is one of the main stumbling blocks in developing rational catalyst design strategies in heterogeneous catalysis. We show here how to identify the crucial atomic structure motif for the industrial Cu/ZnO/Al{sub 2}O{sub 3} methanol synthesis catalyst. Using a combination of experimental evidence from bulk-, surface-sensitive and imaging methods collected on real high-performance catalytic systems in combination with DFT calculations. We show that the active site consists of Cu steps peppered with Zn atoms, all stabilized by a series of well defined bulk defects and surface species that need jointly to be present for the system to work.

1,888 citations