scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Hybrid AC/DC Microgrid and Its Coordination Control

17 Mar 2011-IEEE Transactions on Smart Grid (IEEE)-Vol. 2, Iss: 2, pp 278-286
TL;DR: A hybrid ac/dc micro grid is proposed to reduce the processes of multiple dc-ac-dc or ac-dc-ac conversions in an individual ac or dc grid to maintain stable operation under the proposed coordination control schemes.
Abstract: This paper proposes a hybrid ac/dc micro grid to reduce the processes of multiple dc-ac-dc or ac-dc-ac conversions in an individual ac or dc grid. The hybrid grid consists of both ac and dc networks connected together by multi-bidirectional converters. AC sources and loads are connected to the ac network whereas dc sources and loads are tied to the dc network. Energy storage systems can be connected to dc or ac links. The proposed hybrid grid can operate in a grid-tied or autonomous mode. The coordination control algorithms are proposed for smooth power transfer between ac and dc links and for stable system operation under various generation and load conditions. Uncertainty and intermittent characteristics of wind speed, solar irradiation level, ambient temperature, and load are also considered in system control and operation. A small hybrid grid has been modeled and simulated using the Simulink in the MATLAB. The simulation results show that the system can maintain stable operation under the proposed coordination control schemes when the grid is switched from one operating condition to another.
Citations
More filters
Journal ArticleDOI
TL;DR: Decentralized, distributed, and hierarchical control of grid-connected and islanded microgrids that mimic the behavior of the mains grid is reviewed.
Abstract: This paper presents a review of advanced control techniques for microgrids. This paper covers decentralized, distributed, and hierarchical control of grid-connected and islanded microgrids. At first, decentralized control techniques for microgrids are reviewed. Then, the recent developments in the stability analysis of decentralized controlled microgrids are discussed. Finally, hierarchical control for microgrids that mimic the behavior of the mains grid is reviewed.

1,702 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive literature review of AC and DC microgrid (MG) systems in connection with distributed generation (DG) units using renewable energy sources (RESs), energy storage systems (ESS) and loads.
Abstract: This paper presents the latest comprehensive literature review of AC and DC microgrid (MG) systems in connection with distributed generation (DG) units using renewable energy sources (RESs), energy storage systems (ESS) and loads. A survey on the alternative DG units' configurations in the low voltage AC (LVAC) and DC (LVDC) distribution networks with several applications of microgrid systems in the viewpoint of the current and the future consumer equipments energy market is extensively discussed. Based on the economical, technical and environmental benefits of the renewable energy related DG units, a thorough comparison between the two types of microgrid systems is provided. The paper also investigates the feasibility, control and energy management strategies of the two microgrid systems relying on the most current research works. Finally, the generalized relay tripping currents are derived and the protection strategies in microgrid systems are addressed in detail. From this literature survey, it can be revealed that the AC and DC microgrid systems with multiconverter devices are intrinsically potential for the future energy systems to achieve reliability, efficiency and quality power supply.

1,004 citations

Journal ArticleDOI
TL;DR: In this article, an overview of the state of the art in dc microgrid protection and grounding is provided, which discusses both design of practical protective devices and their integration into overall protection systems.
Abstract: DC microgrids (MGs) have been gaining a continually increasing interest over the past couple of years both in academia and industry. The advantages of dc distribution when compared to its ac counterpart are well known. The most important ones include higher reliability and efficiency, simpler control and natural interface with renewable energy sources, and electronic loads and energy storage systems. With rapid emergence of these components in modern power systems, the importance of dc in today's society is gradually being brought to a whole new level. A broad class of traditional dc distribution applications, such as traction, telecom, vehicular, and distributed power systems can be classified under dc MG framework and ongoing development, and expansion of the field is largely influenced by concepts used over there. This paper aims first to shed light on the practical design aspects of dc MG technology concerning typical power hardware topologies and their suitability for different emerging smart grid applications. Then, an overview of the state of the art in dc MG protection and grounding is provided. Owing to the fact that there is no zero-current crossing, an arc that appears upon breaking dc current cannot be extinguished naturally, making the protection of dc MGs a challenging problem. In relation with this, a comprehensive overview of protection schemes, which discusses both design of practical protective devices and their integration into overall protection systems, is provided. Closely coupled with protection, conflicting grounding objectives, e.g., minimization of stray current and common-mode voltage, are explained and several practical solutions are presented. Also, standardization efforts for dc systems are addressed. Finally, concluding remarks and important future research directions are pointed out.

964 citations

Journal ArticleDOI
TL;DR: This paper presents a review of issues concerning microgrid issues and provides an account of research in areas related to microgrids, including distributed generation, microgrid value propositions, applications of power electronics, economic issues, micro grid operation and control, micro grids clusters, and protection and communications issues.
Abstract: The significant benefits associated with microgrids have led to vast efforts to expand their penetration in electric power systems. Although their deployment is rapidly growing, there are still many challenges to efficiently design, control, and operate microgrids when connected to the grid, and also when in islanded mode, where extensive research activities are underway to tackle these issues. It is necessary to have an across-the-board view of the microgrid integration in power systems. This paper presents a review of issues concerning microgrids and provides an account of research in areas related to microgrids, including distributed generation, microgrid value propositions, applications of power electronics, economic issues, microgrid operation and control, microgrid clusters, and protection and communications issues.

875 citations

Journal ArticleDOI
TL;DR: The use of static synchronous compensator in grid-connected microgrids is introduced in order to improve voltage sags/swells and unbalances and the coordinated control of distributed storage systems and ac/dc hybrid micro grids is explained.
Abstract: This paper summarizes the main problems and solutions of power quality in microgrids, distributed-energy-storage systems, and ac/dc hybrid microgrids. First, the power quality enhancement of grid-interactive microgrids is presented. Then, the cooperative control for enhance voltage harmonics and unbalances in microgrids is reviewed. Afterward, the use of static synchronous compensator (STATCOM) in grid-connected microgrids is introduced in order to improve voltage sags/swells and unbalances. Finally, the coordinated control of distributed storage systems and ac/dc hybrid microgrids is explained.

742 citations

References
More filters
Proceedings ArticleDOI
20 Jun 2004
TL;DR: In this article, the authors propose a system approach which views generation and associated loads as a subsystem or a "microgrid". During disturbances, the generation and corresponding loads can separate from the distribution system to isolate the microgrid's load from the disturbance (providing UPS services) without harming the transmission grid's integrity.
Abstract: Application of individual distributed generators can cause as many problems as it may solve. A better way to realize the emerging potential of distributed generation is to take a system approach which views generation and associated loads as a subsystem or a "microgrid". During disturbances, the generation and corresponding loads can separate from the distribution system to isolate the microgrid's load from the disturbance (providing UPS services) without harming the transmission grid's integrity. This ability to island generation and loads together has a potential to provide a higher local reliability than that provided by the power system as a whole. In this model it is also critical to be able to use the waste heat by placing the sources near the heat load. This implies that a unit can be placed at any point on the electrical system as required by the location of the heat load.

1,685 citations

Journal ArticleDOI
TL;DR: A modified variable step size INC MPPT algorithm is proposed, which automatically adjusts the step size to track the PV array maximum power point and can effectively improve the MPPT speed and accuracy simultaneously.
Abstract: Maximum power point tracking (MPPT) techniques are employed in photovoltaic (PV) systems to make full utilization of PV array output power which depends on solar irradiation and ambient temperature. Among all the MPPT strategies, the incremental conductance (INC) algorithm is widely used due to the high tracking accuracy at steady state and good adaptability to the rapidly changing atmospheric conditions. In this paper, a modified variable step size INC MPPT algorithm is proposed, which automatically adjusts the step size to track the PV array maximum power point. Compared with the conventional fixed step size method, the proposed approach can effectively improve the MPPT speed and accuracy simultaneously. Furthermore, it is simple and can be easily implemented in digital signal processors. A theoretical analysis and the design principle of the proposed method are provided and its feasibility is also verified by simulation and experimental results.

1,235 citations


"A Hybrid AC/DC Microgrid and Its Co..." refers methods in this paper

  • ...The reference value of the solar panel terminal voltage is determined by the basic perturbation and observation (P&O) algorithm based on solar irradiation and temperature to harness the maximum power [21], [22]....

    [...]

Proceedings ArticleDOI
01 Sep 2007
TL;DR: In this paper, an easy-to-use battery model applied to dynamic simulation software is presented, which uses only the battery State-Of-Charge (SOC) as a state variable in order to avoid the algebraic loop problem.
Abstract: This paper presents an easy-to-use battery model applied to dynamic simulation software. The simulation model uses only the battery State-Of-Charge (SOC) as a state variable in order to avoid the algebraic loop problem. It is shown that this model, composed of a controlled voltage source in series with a resistance, can accurately represent four types of battery chemistries. The model's parameters can easily be extracted from the manufacturer's discharge curve, which allows for an easy use of the model. A method is described to extract the model's parameters and to approximate the internal resistance. The model is validated by superimposing the results with the manufacturer's discharge curves. Finally, the battery model is included in the SimPowerSystems (SPS) simulation software and is used in the Hybrid Electric Vehicle (HEV) demo. The results for the battery and for the DC-DC converter are analysed and they show that the model can accurately represent the general behaviour of the battery.

1,102 citations


"A Hybrid AC/DC Microgrid and Its Co..." refers background in this paper

  • ...Two important parameters to represent state of a battery are terminal voltage and state of charge (SOC) as follows [13]:...

    [...]

Journal ArticleDOI
TL;DR: Experimental results of the proposed MPPT system indicate near-optimal WG output power, increased by 11%-50% compared to a WG directly connected via a rectifier to the battery bank, and better exploitation of the available wind energy is achieved, especially under low wind speeds.
Abstract: A wind-generator (WG) maximum-power-point-tracking (MPPT) system is presented, consisting of a high-efficiency buck-type dc/dc converter and a microcontroller-based control unit running the MPPT function. The advantages of the proposed MPPT method are that no knowledge of the WG optimal power characteristic or measurement of the wind speed is required and the WG operates at a variable speed. Thus, the system features higher reliability, lower complexity and cost, and less mechanical stress of the WG. Experimental results of the proposed system indicate near-optimal WG output power, increased by 11%-50% compared to a WG directly connected via a rectifier to the battery bank. Thus, better exploitation of the available wind energy is achieved, especially under low wind speeds.

907 citations


"A Hybrid AC/DC Microgrid and Its Co..." refers methods in this paper

  • ...The rotor rotational speed is obtained through the MPPT algorithm, which is based on the power and speed characteristic of the wind turbine [26]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, an AC-linked hybrid wind/photovoltaic (PV)/fuel cell alternative energy system for stand-alone applications is proposed, where wind and PV are the primary power sources of the system, and an FC-electrolyzer combination is used as a backup and a long-term storage system.
Abstract: This paper proposes an AC-linked hybrid wind/photovoltaic (PV)/fuel cell (FC) alternative energy system for stand-alone applications. Wind and PV are the primary power sources of the system, and an FC-electrolyzer combination is used as a backup and a long-term storage system. An overall power management strategy is designed for the proposed system to manage power flows among the different energy sources and the storage unit in the system. A simulation model for the hybrid energy system has been developed using MATLAB/Simulink. The system performance under different scenarios has been verified by carrying out simulation studies using a practical load demand profile and real weather data.

722 citations