scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A hybrid numerical model based on FNPT-NS for the estimation of long wave run-up

TL;DR: Sriram et al. as mentioned in this paper used the strong coupling between the fully nonlinear potential flow theory (FNPT) at the far field and Navier-Stokes (NS) equations in the nearshore.
About: This article is published in Ocean Engineering.The article was published on 2020-04-15. It has received 10 citations till now. The article focuses on the topics: Undular bore.
Citations
More filters
Posted ContentDOI
TL;DR: The results show that as a dynamic neural network, NARX neural network modular prediction model is more suitable for the analysis and prediction of time series data and has better stability and accuracy.
Abstract: Tide variations are affected not only by periodic movement of celestial bodies but also by time-varying interference from the external environment. To improve the accuracy of tide prediction, a modular tide level prediction model (HA-NARX) is proposed. This model divides tide data into two parts: astronomical tide data affected by celestial tide-generating forces and nonastronomical tide data affected by various environmental factors. Final tide prediction results are obtained using a nonlinear autoregressive exogenous model (NARX) neural network combined with harmonic analysis (HA) data. To verify the feasibility of the model, tide data under different climatic and geographical conditions are used to simulate the prediction of tide levels, and the results are compared with those of traditional HA, the genetic algorithm-back propagation (GA-BP) neural network and the wavelet neural network (WNN). The results show that the greater the influence of meteorological factors on tides, the more obvious is the improvement in accuracy and stability of HA-NARX prediction results compared to traditional models, with the highest prediction accuracy improvement of 234%. The proposed model not only has a simple structure but can also effectively improve the stability and accuracy of tide prediction.

12 citations

Journal ArticleDOI
TL;DR: In this article, a simplified semi-analytical method is proposed based on conservation of mass and momentum to estimate the force on the rectangular structures, which can reasonably predict experimental force-time history.

12 citations

Journal ArticleDOI
TL;DR: The paper brings out the advantages and implementation issues of MLPG, the relationship with ISPH/MPS methods and some concepts that are adopted in both formulations, and the key challenges and future directions in the development of the numerical method.

12 citations

Journal ArticleDOI
19 May 2020-Water
TL;DR: In this article, a depth-integrated numerical model was used to assess the inundation hazard in coastal areas generated by a seismogenic tsunami in the Ionic coast of Sicily (Italy).
Abstract: This paper addresses the tsunami propagation and subsequent coastal areas flooding by means of a depth-integrated numerical model. Such an approach is fundamental in order to assess the inundation hazard in coastal areas generated by seismogenic tsunami. In this study we adopted, an interdisciplinary approach, in order to consider the tsunami propagation, relates both to geomorphological characteristics of the coast and the bathymetry. In order to validate the numerical model, comparisons with results of other studies were performed. This manuscript presents first applicative results achieved using the weakly dispersive Boussinesq model in the field of tsunami propagation and coastal inundation. Ionic coast of Sicily (Italy) was chosen as a case study due to its high level of exposure to tsunamis. Indeed, the tsunami could be generated by an earthquake in the external Calabrian arc or in the Hellenic arc, both active seismic zones. Finally, in order to demonstrate the possibility to give indications to local authorities, an inundation map, over a small area, was produced by means of the numerical model.

8 citations

Journal ArticleDOI
TL;DR: The hybrid scheme developed in the time domain to address the wave breaking impact on the structure is a reliable, robust, and efficient alternative for simulating fluid–structure interaction problems.

7 citations

References
More filters
Journal ArticleDOI
TL;DR: A finite-size particle scheme for the numerical solution of two-and three-dimensional gas dynamical problems of astronomical interest is described and tested in this article, which is then applied to the fission problem for optically thick protostars.
Abstract: A finite-size particle scheme for the numerical solution of two- and three-dimensional gas dynamical problems of astronomical interest is described and tested. The scheme is then applied to the fission problem for optically thick protostars. Results are given, showing the evolution of one such protostar from an initial state as a single, rotating star to a final state as a triple system whose components contain 60% of the original mass. The decisiveness of this numerical test of the fission hypothesis and its relevance to observed binaries are briefly discussed.

5,508 citations

Journal ArticleDOI
TL;DR: In this paper, a finite-difference method for solving the time-dependent Navier-Stokes equations for an incompressible fluid is introduced, which is equally applicable to problems in two and three space dimensions.
Abstract: A finite-difference method for solving the time-dependent Navier- Stokes equations for an incompressible fluid is introduced. This method uses the primitive variables, i.e. the velocities and the pressure, and is equally applicable to problems in two and three space dimensions. Test problems are solved, and an ap- plication to a three-dimensional convection problem is presented.

4,991 citations

Journal ArticleDOI
TL;DR: In this article, an approximate theory is presented for non-breaking waves and an asymptotic result is derived for the maximum runup of solitary waves on plane beaches, and a series of laboratory experiments is described to support the theory.
Abstract: This is a study of the runup of solitary waves on plane beaches. An approximate theory is presented for non-breaking waves and an asymptotic result is derived for the maximum runup of solitary waves. A series of laboratory experiments is described to support the theory. It is shown that the linear theory predicts the maximum runup satisfactorily, and that the nonlinear theory describes the climb of solitary waves equally well. Different runup regimes are found to exist for the runup of breaking and non-breaking waves. A breaking criterion is derived for determining whether a solitary wave will break as it climbs up a sloping beach, and a different criterion is shown to apply for determining whether a wave will break during rundown. These results are used to explain some of the existing empirical runup relationships.

866 citations

Journal ArticleDOI
TL;DR: In this paper, a moving particle semi-implicit (MPS) algorithm is used for two-dimensional incompressible non-viscous flow analysis and two types of breaking waves, plunging and spilling breakers, are observed in the calculation results.
Abstract: SUMMARY The numerical method used in this study is the moving particle semi-implicit (MPS) method, which is based on particles and their interactions. The particle number density is implicitly required to be constant to satisfy incompressibility. A semi-implicit algorithm is used for two-dimensional incompressible non-viscous flow analysis. The particles whose particle number densities are below a set point are considered as on the free surface. Grids are not necessary in any calculation steps. It is estimated that most of computation time is used in generation of the list of neighboring particles in a large problem. An algorithm to enhance the computation speed is proposed. The MPS method is applied to numerical simulation of breaking waves on slopes. Two types of breaking waves, plunging and spilling breakers, are observed in the calculation results. The breaker types are classified by using the minimum angular momentum at the wave front. The surf similarity parameter which separates the types agrees well with references. Breaking waves are also calculated with a passively moving float which is modelled by particles. Artificial friction due to the disturbed motion of particles causes errors in the flow velocity distribution which is shown in comparison with the theoretical solution of a cnoidal wave. © 1998 John Wiley & Sons, Ltd.

767 citations