scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

A Joint QR-LS Based Coarse-Fine Channel Estimation and QR-LRL Detection for Mobile WiMAX 802.16m

01 Dec 2011-pp 1-5
TL;DR: This work extended the previous work of QR-RLS based MIMO(Multiple input Multiple output) channel estimation to Mobile Wimax 802.16m system, where both preamble and pilots are jointly used for robust channel estimation.
Abstract: In this paper, We extended our previous work of QR-RLS based MIMO(Multiple input Multiple output) channel estimation to Mobile Wimax 802.16m system. Mobile wimax system provides high data rate, also fulfills user's requirement like VOD(Video on demand)at very high vehicle speed and also provides better cell coverage area. Channel estimation is crucial part to achieve this goals especially in fast fading environment. Generally, Mobile Wimax systems uses Preamble and Pilots for channel estimation purpose. In the proposed method both preamble and pilots are jointly used for robust channel estimation. At First, QR-RLS Estimator uses Preamble for coarse channel estimation at start of every frame. Once the coarse channel is estimated, then pilots (scattered throughout time-frequency grid) are jointly used with the coarse channel component to derive the channel fading rate. This fading rate is then used to finely estimate the channel at pilot as well as data subcarrier. Thus robust estimation results without adding any overhead. Jointly estimated channel is then used with QR-LRL based data detection, where hard decision values are calculated. Simulation results are shown under various slow-fast channel fading conditions. Results are compared with pilot based channel estimation with LS(least square) interpolation, which shows that joint coarse-Fine estimation gives better performance.
Citations
More filters
Proceedings ArticleDOI
01 Sep 2020
TL;DR: It is observed that MMSE-IRC receiver successfully mitigates the interferences compared to only MMSE based receiver and simulation results also show performance improvement over various parameters like sum-rate, interference mitigation and BER compared to prior technologies i.e. 4G-LTE, WiMAX, etc.
Abstract: In this work, we investigated the performance of single input single output (SISO) downlink channel considering 5G new radio (NR). A number of parameters such as different modulation schemes, channel coding with varying code rates, scalable numerology μ and 3GPP channel models have been considered for evaluation. In addition, the minimum mean square error-interference rejection combining (MMSE-IRC) technique for interference mitigation and bit error rate (BER) performance is analyzed and presented. We also compared the sum-rate performance of LTE and 5G NR. It is observed that MMSE-IRC receiver successfully mitigates the interferences compared to only MMSE based receiver. Simulation results also show performance improvement over various parameters like sum-rate, interference mitigation and BER compared to prior technologies i.e. 4G-LTE, WiMAX, etc.

3 citations


Cites background from "A Joint QR-LS Based Coarse-Fine Cha..."

  • ...e 4G (LTE, WiMAX) in terms of BER, sum-rate and interference mitigation [8] ....

    [...]

Proceedings ArticleDOI
01 Mar 2016
TL;DR: This paper introduces a novel joint channel estimation and detection method for very large MIMO system that uses enlarged QR-LRL based ordered Detection jointly with the EVD based estimated channel, which not only results in less complexity but also provides better BER performance compared to conventional EVD-ILSP method.
Abstract: This paper introduces a novel joint channel estimation and detection method for very large MIMO system. Conventionally, orthogonal pilot sequences are used to determine correct CSI(channel state information). It falls behind due to pilot contamination and spectral inefficiency in large MIMO systems. Many authors suggested promising approaches of blind and semi blind channel estimation[2][3], which work well with a trade-off for complexity. Author[1] suggested EVD-ILSP based estimation, which results in high spectral efficiency compared to conventional method, However, suffers from high complexity due to ILSP method. Here, the proposed method uses enlarged QR-LRL[5] based ordered Detection jointly with the EVD based estimated channel, which not only results in less complexity but also provides better BER performance compared to conventional EVD-ILSP method. Thus the throughput of large MIMO system is increased with reduced complexity. Simulation results demonstrate remarkable improvement in the performance of proposed method over conventional method.
References
More filters
Book
01 Jan 1986
TL;DR: In this paper, the authors propose a recursive least square adaptive filter (RLF) based on the Kalman filter, which is used as the unifying base for RLS Filters.
Abstract: Background and Overview. 1. Stochastic Processes and Models. 2. Wiener Filters. 3. Linear Prediction. 4. Method of Steepest Descent. 5. Least-Mean-Square Adaptive Filters. 6. Normalized Least-Mean-Square Adaptive Filters. 7. Transform-Domain and Sub-Band Adaptive Filters. 8. Method of Least Squares. 9. Recursive Least-Square Adaptive Filters. 10. Kalman Filters as the Unifying Bases for RLS Filters. 11. Square-Root Adaptive Filters. 12. Order-Recursive Adaptive Filters. 13. Finite-Precision Effects. 14. Tracking of Time-Varying Systems. 15. Adaptive Filters Using Infinite-Duration Impulse Response Structures. 16. Blind Deconvolution. 17. Back-Propagation Learning. Epilogue. Appendix A. Complex Variables. Appendix B. Differentiation with Respect to a Vector. Appendix C. Method of Lagrange Multipliers. Appendix D. Estimation Theory. Appendix E. Eigenanalysis. Appendix F. Rotations and Reflections. Appendix G. Complex Wishart Distribution. Glossary. Abbreviations. Principal Symbols. Bibliography. Index.

16,062 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the performance of using multi-element array (MEA) technology to improve the bit-rate of digital wireless communications and showed that with high probability extraordinary capacity is available.
Abstract: This paper is motivated by the need for fundamental understanding of ultimate limits of bandwidth efficient delivery of higher bit-rates in digital wireless communications and to also begin to look into how these limits might be approached. We examine exploitation of multi-element array (MEA) technology, that is processing the spatial dimension (not just the time dimension) to improve wireless capacities in certain applications. Specifically, we present some basic information theory results that promise great advantages of using MEAs in wireless LANs and building to building wireless communication links. We explore the important case when the channel characteristic is not available at the transmitter but the receiver knows (tracks) the characteristic which is subject to Rayleigh fading. Fixing the overall transmitted power, we express the capacity offered by MEA technology and we see how the capacity scales with increasing SNR for a large but practical number, n, of antenna elements at both transmitter and receiver. We investigate the case of independent Rayleigh faded paths between antenna elements and find that with high probability extraordinary capacity is available. Compared to the baseline n = 1 case, which by Shannon‘s classical formula scales as one more bit/cycle for every 3 dB of signal-to-noise ratio (SNR) increase, remarkably with MEAs, the scaling is almost like n more bits/cycle for each 3 dB increase in SNR. To illustrate how great this capacity is, even for small n, take the cases n = 2, 4 and 16 at an average received SNR of 21 dB. For over 99% of the channels the capacity is about 7, 19 and 88 bits/cycle respectively, while if n = 1 there is only about 1.2 bit/cycle at the 99% level. For say a symbol rate equal to the channel bandwith, since it is the bits/symbol/dimension that is relevant for signal constellations, these higher capacities are not unreasonable. The 19 bits/cycle for n = 4 amounts to 4.75 bits/symbol/dimension while 88 bits/cycle for n = 16 amounts to 5.5 bits/symbol/dimension. Standard approaches such as selection and optimum combining are seen to be deficient when compared to what will ultimately be possible. New codecs need to be invented to realize a hefty portion of the great capacity promised.

10,526 citations

Book
01 Feb 1975
TL;DR: An in-depth and practical guide, Microwave Mobile Communications will provide you with a solid understanding of the microwave propagation techniques essential to the design of effective cellular systems.
Abstract: From the Publisher: IEEE Press is pleased to bring back into print this definitive text and reference covering all aspects of microwave mobile systems design. Encompassing ten years of advanced research in the field, this invaluable resource reviews basic microwave theory, explains how cellular systems work, and presents useful techniques for effective systems development. The return of this classic volume should be welcomed by all those seeking the original authoritative and complete source of information on this emerging technology. An in-depth and practical guide, Microwave Mobile Communications will provide you with a solid understanding of the microwave propagation techniques essential to the design of effective cellular systems.

9,064 citations


"A Joint QR-LS Based Coarse-Fine Cha..." refers methods in this paper

  • ...To mitigate the above mentioned case, In this paper QRRLS based channel estimator uses preamble in time domain to estimate coarse component of channel, which is then transformed to freq. domain and used with pilots to finely track the channel fading parameter from symbol to symbol....

    [...]

Proceedings ArticleDOI
25 Jul 1995
TL;DR: The authors present the MMSE and LS estimators and a method for modifications compromising between complexity and performance and the symbol error rate for a 18-QAM system is presented by means of simulation results.
Abstract: The use of multi-amplitude signaling schemes in wireless OFDM systems requires the tracking of the fading radio channel. The paper addresses channel estimation based on time-domain channel statistics. Using a general model for a slowly fading channel, the authors present the MMSE and LS estimators and a method for modifications compromising between complexity and performance. The symbol error rate for a 18-QAM system is presented by means of simulation results. Depending upon estimator complexity, up to 4 dB in SNR can be gained over the LS estimator.

1,647 citations

Journal ArticleDOI
TL;DR: This work has implemented a decision feedback equalizer for all sub-channels followed by periodic block-type pilots and compared the performances of all schemes by measuring bit error rates with 16QAM, QPSK, DQPSK and BPSK as modulation schemes, and multipath Rayleigh fading and AR based fading channels as channel models.
Abstract: Channel estimation techniques for OFDM systems based on a pilot arrangement are investigated. Channel estimation based on a comb type pilot arrangement is studied through different algorithms for both estimating the channel at pilot frequencies and interpolating the channel. Channel estimation at pilot frequencies is based on LS and LMS methods while channel interpolation is done using linear interpolation, second order interpolation, low-pass interpolation, spline cubic interpolation, and time domain interpolation. Time-domain interpolation is obtained by passing to the time domain by means of IDFT (inverse discrete Fourier transform), zero padding and going back to the frequency domain by DFT (discrete Fourier transform). In addition, channel estimation based on a block type pilot arrangement is performed by sending pilots in every sub-channel and using this estimation for a specific number of following symbols. We have also implemented a decision feedback equalizer for all sub-channels followed by periodic block-type pilots. We have compared the performances of all schemes by measuring bit error rates with 16QAM, QPSK, DQPSK and BPSK as modulation schemes, and multipath Rayleigh fading and AR based fading channels as channel models.

1,551 citations


"A Joint QR-LS Based Coarse-Fine Cha..." refers methods in this paper

  • ...Also, Different types like Pilot aided/Training based estimation schemes are frequently used for different systems under different channel environments like Fast fading, Flat fading....

    [...]