scispace - formally typeset
Search or ask a question
Posted ContentDOI

A large-scale transcriptome-wide association study (TWAS) of ten blood cell phenotypes reveals complexities of TWAS fine-mapping

TL;DR: In this paper, the authors performed a transcriptome-wide association study (TWAS) using PrediXcan to systematically investigate the association between genetically-predicted gene expression and hematological measures in 54,542 individuals of European ancestry from the Genetic Epidemiology Research on Adult Health and Aging cohort.
Abstract: Hematological measures are important intermediate clinical phenotypes for many acute and chronic diseases. Hematological measures are highly heritable, and although genome-wide association studies (GWAS) have identified thousands of loci containing trait-associated variants, the causal genes underlying these associations are often uncertain. To better understand the underlying genetic regulatory mechanisms, we performed a transcriptome-wide association study (TWAS) using PrediXcan to systematically investigate the association between genetically-predicted gene expression and hematological measures in 54,542 individuals of European ancestry from the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. We found 239 significant gene-trait associations with hematological measures. Among this set of 239 associations, we replicated 71 at p < 0.05 with same direction of effect for the blood cell trait in a meta-analysis of TWAS results consisting of up to 35,900 European ancestry individuals from the Womens Health Initiative (WHI), the Atherosclerosis Risk in Communities Study (ARIC), and BioMe Biobank. We further attempted to refine this list of candidate genes by performing conditional analyses, adjusting for individual variants previously associated with these hematological measures, and performed further fine-mapping of TWAS loci. To assist with the interpretation of TWAS findings, we designed an R Shiny application to interactively visualize TWAS results, one genomic locus at a time, by integrating our TWAS results with additional genetic data sources (GWAS, TWAS from other gene expression reference panels, conditional analyses, known GWAS variants, etc.). Our results and R Shiny application highlight frequently overlooked challenges with TWAS and illustrate the complexity of TWAS fine-mapping efforts. Author SummaryTranscriptome-wide association studies (TWAS) have shown great promise in furthering our understanding of the genetic regulatory mechanisms underlying complex trait variation. However, interpreting TWAS results can be incredibly complex, especially in large-scale analyses where hundreds of signals appear throughout the genome, with multiple genes often identified in a single chromosomal region. Our research demonstrates this complexity through real data examples from our analysis of hematological traits, and we provide a useful web application to visualize TWAS results in a broadly approachable format. Together, our results and web application illustrate the importance of interpreting TWAS studies in context and highlight the need to carefully examine results in a region-wide context to draw reasonable conclusions and formulate mechanistic hypotheses.

Summary (2 min read)

Jump to: [Introduction][Results][Discussion][Materials and Methods] and [FOCUS:]

Introduction

  • Hematological measures (red cell, white cell, and platelet traits) have a critical role in oxygen transport, immunity, infection, thrombosis, and hemostasis and are associated with many acute and chronic diseases, including autoimmunity, asthma, cardiovascular disease, and COVID-19 [1-5].
  • Unfortunately, these individual SNP-based GWAS make it difficult to identify regulatory variants with small effect sizes which in aggregate impact the same gene, even in very large sample sizes, and they identify regions of associated variants whose biological function is often not clear [6].
  • Hematological phenotypes are particularly good candidates for TWAS analysis due to the availability of large RNA-sequencing datasets in a relevant tissue type, high heritability across traits, and the large number of known genetic associations, most with poorly understood mechanisms and target genes.

Results

  • The authors applied the PrediXcan method to identify expression-trait associations using individual level genotype and phenotype data from the GERA non-Hispanic white ethnic group.
  • CC-BY 4.0 International licenseavailable under a (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
  • The copyright holder for this preprintthis version posted February 23, 2021.
  • Marginal TWAS result displayed in (A), with Black colored genes and variants denoting those previously reported by GWAS, blue variants denote those not previously reported as GWAS sentinel variants.
  • (B) is a mirrored-Manhattan locus-zoom plot displaying genes connected to their predictive model variants with TWAS results (top panel) and GWAS results .

Discussion

  • The authors performed a large-scale TWAS using PrediXcan on 54,542 GERA individuals of European ancestry and present compelling evidence that results from marginal TWAS analyses alone cannot illuminate causal genes at loci for complex traits.
  • The copyright holder for this preprintthis version posted February 23, 2021.
  • CC-BY 4.0 International licenseavailable under a (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
  • Additionally, results for these two genes differ slightly by reference panel.
  • While the authors show that TWAS may help in some cases to pinpoint likely causal genes, they emphasize the need for investigators to carefully interpret TWAS results alone, out of context.

Materials and Methods

  • CC-BY 4.0 International licenseavailable under a (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
  • Genotyping was performed using the Illumina GSA array (~640.000 variants) and genotype data were imputed using the “1000G Phase 3 v5” reference panel.
  • In total, 8,455 European ancestry participants with hematological phenotypes were included in the analysis.
  • In order to replicate the conditionally significant gene-trait association, the authors tested each association via a meta-analysis of the ARIC, WHI, and BioMe cohorts.

FOCUS:

  • The authors used the Fine-mapping Of CaUsal gene Sets [15] software to fine-map TWAS statistics at genomic risk regions.
  • CC-BY 4.0 International licenseavailable under a (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
  • BioRxiv preprint 28 has not yet been assigned to a locus and continue in this fashion until all statistically significant TWAS genes have been assigned to a locus.
  • The authors excluded those without a valid date of blood cell count measurement, with age < 18 years, or with discordant genotypic and phenotypic sex, as well as .
  • Specifically, the authors computed the eigenvalue decomposition on the GERA sample outside of the cpgen script (for each phenotype), and then subsequently loaded the appropriate eigenvectors and eigenvalues into the program, modifying the script so that it could take these eigenvectors and eigenvalues as input.

Did you find this useful? Give us your feedback

Content maybe subject to copyright    Report

1
Full title: A large-scale transcriptome-wide association study (TWAS) of ten blood cell
phenotypes reveals complexities of TWAS fine-mapping
Short title: TWAS fine-mapping of blood cell phenotypes
Authors
Amanda L Tapia MS
1
, Bryce T Rowland BS
1
, Jonathan D Rosen MS
1
, Michael Preuss PhD
2
, Kris
Young PhD
3
, Misa Graff PhD
3
, Hélène Choquet PhD
4
, David J Couper PhD
1
, Steve Buyske PhD
5
,
Stephanie A Bien PhD
6
, Eric Jorgenson PhD
4
, Charles Kooperberg PhD
6
, Ruth J.F. Loos PhD
2
,
Alanna C Morrison PhD
7
, Kari E North PhD
3
, Bing Yu PhD
7
, Alexander P Reiner MD
8
, Yun Li
PhD
9,1,10*
, Laura M Raffield PhD
9*
*Contributed equally to this work
1
Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA,
2
The Charles
Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New
York, NY, USA,
3
Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA,
4
Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA,
5
Department
of Statistics, Rutgers University, Piscataway, NJ, USA,
6
Division of Public Health Sciences, Fred
Hutchinson Cancer Research Center, Seattle, WA, USA,
7
Human Genetics Center, Department of
Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The
University of Texas Health Science Center at Houston, Houston, TX, USA,
8
Department of
Epidemiology, University of Washington, Seattle, WA, USA,
9
Department of Genetics, University
of North Carolina, Chapel Hill, NC, USA,
10
Department of Computer Science, University of North
Carolina at Chapel Hill, Chapel Hill, NC, USA
Correspondence: Laura M. Raffield, PhD
Assistant Professor, Department of Genetics
University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
laura_raffield@unc.edu
.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.23.432444doi: bioRxiv preprint

2
Abstract
Hematological measures are important intermediate clinical phenotypes for many acute
and chronic diseases. Hematological measures are highly heritable, and although genome-wide
association studies (GWAS) have identified thousands of loci containing trait-associated
variants, the causal genes underlying these associations are often uncertain. To better
understand the underlying genetic regulatory mechanisms, we performed a transcriptome-
wide association study (TWAS) using PrediXcan to systematically investigate the association
between genetically-predicted gene expression and hematological measures in 54,542
individuals of European ancestry from the Genetic Epidemiology Research on Adult Health and
Aging (GERA) cohort. We found 239 significant gene-trait associations with hematological
measures. Among this set of 239 associations, we replicated 71 at p < 0.05 with same direction
of effect for the blood cell trait in a meta-analysis of TWAS results consisting of up to 35,900
European ancestry individuals from the Women’s Health Initiative (WHI), the Atherosclerosis
Risk in Communities Study (ARIC), and BioMe Biobank. We further attempted to refine this list
of candidate genes by performing conditional analyses, adjusting for individual variants
previously associated with these hematological measures, and performed further fine-mapping
of TWAS loci. To assist with the interpretation of TWAS findings, we designed an R Shiny
application to interactively visualize TWAS results, one genomic locus at a time, by integrating
our TWAS results with additional genetic data sources (GWAS, TWAS from other gene
expression reference panels, conditional analyses, known GWAS variants, etc.). Our results and
R Shiny application highlight frequently overlooked challenges with TWAS and illustrate the
complexity of TWAS fine-mapping efforts.
.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.23.432444doi: bioRxiv preprint

3
Author Summary
Transcriptome-wide association studies (TWAS) have shown great promise in furthering our
understanding of the genetic regulatory mechanisms underlying complex trait variation.
However, interpreting TWAS results can be incredibly complex, especially in large-scale
analyses where hundreds of signals appear throughout the genome, with multiple genes often
identified in a single chromosomal region. Our research demonstrates this complexity through
real data examples from our analysis of hematological traits, and we provide a useful web
application to visualize TWAS results in a broadly approachable format. Together, our results
and web application illustrate the importance of interpreting TWAS studies in context and
highlight the need to carefully examine results in a region-wide context to draw reasonable
conclusions and formulate mechanistic hypotheses.
Introduction
Hematological measures (red cell, white cell, and platelet traits) have a critical role in
oxygen transport, immunity, infection, thrombosis, and hemostasis and are associated with
many acute and chronic diseases, including autoimmunity, asthma, cardiovascular disease, and
COVID-19 [1-5]. Genome-wide association studies (GWAS) have identified thousands of loci
containing such trait-associated variants, and previous Mendelian randomization and
phenome-wide association study analyses have highlighted the likely causal role of blood cell
trait-associated genetic variants in a variety of disorders, including autoimmune conditions and
.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.23.432444doi: bioRxiv preprint

4
coronary heart disease [1-3]. Unfortunately, these individual SNP-based GWAS make it difficult
to identify regulatory variants with small effect sizes which in aggregate impact the same gene,
even in very large sample sizes, and they identify regions of associated variants whose
biological function is often not clear [6]. Thus, utilizing a gene-based method to aggregate the
effect of multiple regulatory variants may increase the study power to identify novel trait-
associated loci and elucidate mechanisms of biological function.
A transcriptome-wide association study (TWAS) is one gene-based method which
systematically investigates the association between genetically predicted gene expression and
phenotypes of interest [6-9]. Here, we report results from a large TWAS of hematological
measures using the PrediXcan method [6] to analyze data from 54,542 individuals of European
ancestry from the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort
(our discovery data set) [10] [11]. Hematological phenotypes are particularly good candidates
for TWAS analysis due to the availability of large RNA-sequencing datasets in a relevant tissue
type, high heritability across traits, and the large number of known genetic associations, most
with poorly understood mechanisms and target genes. We perform this analysis using whole
blood RNA-sequencing in 922 individuals from the Depression Genes and Networks (DGN) [12]
study as our primary reference panel. After association analysis of imputed gene transcript
levels with hematological indices in GERA, we performed conditional analyses, adjusting for
variants previously identified to affect hematological measures, to evaluate if TWAS-identified
genes represented novel statistical signals or were primarily driven by variants known from
GWAS [3]. These direct conditional analyses represent a major advantage of the use of
individual level data for our TWAS analyses, since these conditional tests could not be
.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.23.432444doi: bioRxiv preprint

5
performed as easily or accurately using summary statistic-based methods. We replicated our
significant set of gene-trait associations in a meta-analyzed sample of TWAS results containing
18,100 individuals from the Women’s Health Initiative (WHI), 9,345 individuals from the
Atherosclerosis Risk in Communities Study (ARIC), and 8,455 individuals from Mount Sinai
BioMe Biobank (BioMe), all of European ancestry (Supplementary Table 1). We also compared
the TWAS results from the primary DGN reference panel to three additional reference panels
(whole blood and Epstein-Barr virus (EBV) transformed lymphocytes from the Genotype-Tissue
Expression (GTEx) Project [13], and monocytes from the Multi-Ethnic Study of Atherosclerosis
(MESA)[14]); these are considered secondary reference panels due to their smaller sample
sizes. These additional analyses helped us to determine if relevant tissues with smaller sample
sizes support our primary TWAS findings with DGN.
We employ several strategies to improve our understanding and interpretation of
complex genomic regions containing multiple TWAS-identified genes. First, we used FOCUS
(fine-mapping of causal gene sets [15]) to seek to identify a set of causal genes within genomic
loci containing multiple significant TWAS gene-trait associations. FOCUS is a software used to
fine-map TWAS statistics at genomic risk regions, while accounting for linkage disequilibrium
(LD) among variants and predicted expression correlation among genes at those risk regions.
Second, we present a novel web-based tool for integrating and visualizing TWAS and GWAS
results, as well as results from multiple expression reference datasets. Additionally, we discuss
frequently overlooked challenges of TWAS interpretation, such as failure to consider the
number of proximal genes which cannot be accurately imputed with a given reference panel,
but which may still be influenced by variants identified in GWAS studies. Our results illustrate
.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.23.432444doi: bioRxiv preprint

Citations
More filters
Posted ContentDOI
05 Aug 2021-bioRxiv
TL;DR: This paper performed a transcriptome-wide association study (TWAS) of 29 hematological traits in 399,835 UK Biobank (UKB) participants of European ancestry using gene expression prediction models trained from whole blood RNA-seq data in 922 individuals.
Abstract: Previous genome-wide association studies (GWAS) of hematological traits have identified over 10,000 distinct trait-specific risk loci, but the underlying causal mechanisms at these loci remain incompletely characterized. We performed a transcriptome-wide association study (TWAS) of 29 hematological traits in 399,835 UK Biobank (UKB) participants of European ancestry using gene expression prediction models trained from whole blood RNA-seq data in 922 individuals. We discovered 557 TWAS signals associated with hematological traits distinct from previously discovered GWAS variants, including 10 completely novel gene-trait pairs corresponding to 9 unique genes. Among the 557 associations, 301 were available for replication in a cohort of 141,286 participants of European ancestry from the Million Veteran Program (MVP). Of these 301 associations, 199 replicated at a nominal threshold (α = 0.05) and 108 replicated at a strict Bonferroni adjusted threshold (α = 0.05/301). Using our TWAS results, we systematically assigned 4,261 out of 16,900 previously identified hematological trait GWAS variants to putative target genes. Compared to coloc, our TWAS results show reduced specificity and increased sensitivity to assign variants to target genes.
References
More filters
Journal ArticleDOI
TL;DR: This work provides a direct window into the regulatory consequences of genetic variation by sequencing RNA from 922 genotyped individuals, and presents a comprehensive description of the distribution of regulatory variation--by the specific expression phenotypes altered, the properties of affected genes, and the genomic characteristics of regulatory variants.
Abstract: Understanding the consequences of regulatory variation in the human genome remains a major challenge, with important implications for understanding gene regulation and interpreting the many disease-risk variants that fall outside of protein-coding regions. Here, we provide a direct window into the regulatory consequences of genetic variation by sequencing RNA from 922 genotyped individuals. We present a comprehensive description of the distribution of regulatory variation--by the specific expression phenotypes altered, the properties of affected genes, and the genomic characteristics of regulatory variants. We detect variants influencing expression of over ten thousand genes, and through the enhanced resolution offered by RNA-sequencing, for the first time we identify thousands of variants associated with specific phenotypes including splicing and allelic expression. Evaluating the effects of both long-range intra-chromosomal and trans (cross-chromosomal) regulation, we observe modularity in the regulatory network, with three-dimensional chromosomal configuration playing a particular role in regulatory modules within each chromosome. We also observe a significant depletion of regulatory variants affecting central and critical genes, along with a trend of reduced effect sizes as variant frequency increases, providing evidence that purifying selection and buffering have limited the deleterious impact of regulatory variation on the cell. Further, generalizing beyond observed variants, we have analyzed the genomic properties of variants associated with expression and splicing and developed a Bayesian model to predict regulatory consequences of genetic variants, applicable to the interpretation of individual genomes and disease studies. Together, these results represent a critical step toward characterizing the complete landscape of human regulatory variation.

577 citations

Journal ArticleDOI
TL;DR: RVTESTS is developed, which implements a broad set of rare variant association statistics and supports the analysis of autosomal and X-linked variants for both unrelated and related individuals and provides useful companion features for annotating sequence variants, integrating bioinformatics databases, performing data quality control and sample selection.
Abstract: Motivation: Next-generation sequencing technologies have enabled the large-scale assessment of the impact of rare and low-frequency genetic variants for complex human diseases. Gene-level association tests are often performed to analyze rare variants, where multiple rare variants in a gene region are analyzed jointly. Applying gene-level association tests to analyze sequence data often requires integrating multiple heterogeneous sources of information (e.g. annotations, functional prediction scores, allele frequencies, genotypes and phenotypes) to determine the optimal analysis unit and prioritize causal variants. Given the complexity and scale of current sequence datasets and bioinformatics databases, there is a compelling need for more efficient software tools to facilitate these analyses. To answer this challenge, we developed RVTESTS, which implements a broad set of rare variant association statistics and supports the analysis of autosomal and X-linked variants for both unrelated and related individuals. RVTESTS also provides useful companion features for annotating sequence variants, integrating bioinformatics databases, performing data quality control and sample selection. We illustrate the advantages of RVTESTS in functionality and efficiency using the 1000 Genomes Project data. Availability and implementation: RVTESTS is available on Linux, MacOS and Windows. Source code and executable files can be obtained at https://github.com/zhanxw/rvtests Contact: moc.liamg@wxnahz; ude.hcimu@olacnog; moc.kooltuo@uil.gnaijad Supplementary information: Supplementary data are available at Bioinformatics online.

344 citations

Journal ArticleDOI
Dragana Vuckovic1, Erik L. Bao2, Parsa Akbari1, Caleb A. Lareau2, Abdou Mousas3, Tao Jiang1, Ming-Huei Chen, Laura M. Raffield4, Manuel Tardaguila5, Jennifer E. Huffman6, Scott C. Ritchie1, Karyn Megy1, Hannes Ponstingl5, Christopher J. Penkett1, Patrick K. Albers5, Emilie M. Wigdor5, Saori Sakaue7, Arden Moscati8, Regina Manansala9, Ken Sin Lo3, Huijun Qian4, Masato Akiyama10, Traci M. Bartz11, Yoav Ben-Shlomo12, Andrew D Beswick12, Jette Bork-Jensen13, Erwin P. Bottinger8, Jennifer A. Brody11, Frank J. A. van Rooij14, Kumaraswamy Naidu Chitrala15, Peter W.F. Wilson16, Hélène Choquet17, John Danesh, Emanuele Di Angelantonio, Niki Dimou18, Jingzhong Ding19, Paul Elliott20, Tõnu Esko21, Michele K. Evans15, Stephan B. Felix22, James S. Floyd11, Linda Broer14, Niels Grarup13, Michael H. Guo23, Qi Guo24, Andreas Greinacher22, Jeffrey Haessler25, Torben Hansen13, J. M. M. Howson1, Wei Huang26, Eric Jorgenson17, Tim Kacprowski27, Mika Kähönen28, Yoichiro Kamatani29, Masahiro Kanai2, Savita Karthikeyan24, Fotios Koskeridis30, Leslie A. Lange31, Terho Lehtimäki, Allan Linneberg13, Yongmei Liu32, Leo-Pekka Lyytikäinen, Ani Manichaikul33, Koichi Matsuda29, Karen L. Mohlke4, Nina Mononen, Yoshinori Murakami29, Girish N. Nadkarni8, Kjell Nikus28, Nathan Pankratz34, Oluf Pedersen13, Michael Preuss8, Bruce M. Psaty11, Olli T. Raitakari35, Stephen S. Rich33, Benjamin Rodriguez, Jonathan D. Rosen4, Jerome I. Rotter36, Petra Schubert6, Cassandra N. Spracklen4, Praveen Surendran5, Hua Tang37, Jean-Claude Tardif3, Mohsen Ghanbari38, Uwe Völker22, Henry Völzke22, Nicholas A. Watkins39, Stefan Weiss22, VA Million Veteran Program5, Na Cai5, Kousik Kundu5, Stephen B. Watt5, Klaudia Walter5, Alan B. Zonderman15, Kelly Cho40, Yun Li4, Ruth J. F. Loos8, Julian C. Knight41, Michel Georges42, Oliver Stegle43, Evangelos Evangelou20, Yukinori Okada7, David J. Roberts44, Michael Inouye, Andrew D. Johnson, Paul L. Auer9, William J. Astle1, Alexander P. Reiner11, Adam S. Butterworth, Willem H. Ouwehand1, Guillaume Lettre3, Vijay G. Sankaran21, Vijay G. Sankaran2, Nicole Soranzo 
03 Sep 2020-Cell
TL;DR: The results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation.

284 citations

Journal ArticleDOI
01 Aug 2015-Genetics
TL;DR: The parent–child pairs revealed a trend toward increasing exogamy over time; the presence in the cohort of individuals endorsing multiple race/ethnicity categories creates interesting challenges and future opportunities for genetic epidemiologic studies.
Abstract: Using genome-wide genotypes, we characterized the genetic structure of 103,006 participants in the Kaiser Permanente Northern California multi-ethnic Genetic Epidemiology Research on Adult Health and Aging Cohort and analyzed the relationship to self-reported race/ethnicity. Participants endorsed any of 23 race/ethnicity/nationality categories, which were collapsed into seven major race/ethnicity groups. By self-report the cohort is 80.8% white and 19.2% minority; 93.8% endorsed a single race/ethnicity group, while 6.2% endorsed two or more. Principal component (PC) and admixture analyses were generally consistent with prior studies. Approximately 17% of subjects had genetic ancestry from more than one continent, and 12% were genetically admixed, considering only nonadjacent geographical origins. Self-reported whites were spread on a continuum along the first two PCs, indicating extensive mixing among European nationalities. Self-identified East Asian nationalities correlated with genetic clustering, consistent with extensive endogamy. Individuals of mixed East Asian–European genetic ancestry were easily identified; we also observed a modest amount of European genetic ancestry in individuals self-identified as Filipinos. Self-reported African Americans and Latinos showed extensive European and African genetic ancestry, and Native American genetic ancestry for the latter. Among 3741 genetically identified parent–child pairs, 93% were concordant for self-reported race/ethnicity; among 2018 genetically identified full-sib pairs, 96% were concordant; the lower rate for parent–child pairs was largely due to intermarriage. The parent–child pairs revealed a trend toward increasing exogamy over time; the presence in the cohort of individuals endorsing multiple race/ethnicity categories creates interesting challenges and future opportunities for genetic epidemiologic studies.

274 citations

Journal ArticleDOI
Ming-Huei Chen, Laura M. Raffield1, Abdou Mousas2, Saori Sakaue3, Jennifer E. Huffman4, Arden Moscati5, Bhavi Trivedi6, Tao Jiang7, Parsa Akbari8, Dragana Vuckovic9, Erik L. Bao10, Xue Zhong11, Regina Manansala12, Véronique Laplante13, Minhui Chen14, Ken Sin Lo2, Huijun Qian1, Caleb A. Lareau10, Mélissa Beaudoin2, Karen A. Hunt6, Masato Akiyama15, Traci M. Bartz16, Yoav Ben-Shlomo17, Andrew D Beswick17, Jette Bork-Jensen18, Erwin P. Bottinger5, Jennifer A. Brody16, Frank J. A. van Rooij19, Kumaraswamynaidu Chitrala20, Kelly Cho21, Hélène Choquet22, Adolfo Correa23, John Danesh, Emanuele Di Angelantonio8, Niki Dimou24, Jingzhong Ding25, Paul Elliott26, Tõnu Esko27, Michele K. Evans20, James S. Floyd16, Linda Broer19, Niels Grarup18, Michael H. Guo28, Andreas Greinacher29, Jeffrey Haessler30, Torben Hansen18, Joanna M. M. Howson7, Qin Qin Huang9, Wei Huang31, Eric Jorgenson22, Tim Kacprowski32, Mika Kähönen33, Yoichiro Kamatani34, Masahiro Kanai10, Savita Karthikeyan7, Fotis Koskeridis35, Leslie A. Lange36, Terho Lehtimäki, Markus M. Lerch29, Allan Linneberg18, Yongmei Liu37, Leo-Pekka Lyytikäinen, Ani Manichaikul38, Hilary C. Martin9, Koichi Matsuda34, Karen L. Mohlke1, Nina Mononen, Yoshinori Murakami34, Girish N. Nadkarni5, Matthias Nauck29, Kjell Nikus33, Willem H. Ouwehand39, Nathan Pankratz40, Oluf Pedersen18, Michael Preuss5, Bruce M. Psaty16, Olli T. Raitakari41, David J. Roberts8, Stephen S. Rich38, Benjamin Rodriguez, Jonathan D. Rosen1, Jerome I. Rotter42, Petra Schubert4, Cassandra N. Spracklen1, Praveen Surendran7, Hua Tang43, Jean-Claude Tardif2, Richard C. Trembath44, Mohsen Ghanbari45, Uwe Völker29, Henry Völzke29, Nicholas A. Watkins39, Alan B. Zonderman20, VA Million Veteran Program46, Peter W.F. Wilson46, Yun Li1, Adam S. Butterworth8, Jean-François Gauchat13, Charleston W. K. Chiang14, Bingshan Li11, Ruth J. F. Loos5, William J. Astle8, Evangelos Evangelou26, David A. van Heel6, Vijay G. Sankaran10, Yukinori Okada3, Nicole Soranzo9, Andrew D. Johnson, Alexander P. Reiner16, Paul L. Auer12, Guillaume Lettre2, Guillaume Lettre13 
03 Sep 2020-Cell
TL;DR: The clinical significance and predictive value of trans-ethnic variants in multiple populations are explored, genetic architecture and the effect of natural selection on these blood phenotypes between populations are compared and the value of a more global representation of populations in genetic studies is highlighted.

233 citations

Frequently Asked Questions (2)
Q1. What are the contributions in "Full title: a large-scale transcriptome-wide association study (twas) of ten blood cell phenotypes reveals complexities of twas fine-mapping short title: twas fine-mapping of blood cell phenotypes authors" ?

Authors Amanda L Tapia MS1, Bryce T Rowland BS1, Jonathan D Rosen MS1, Michael Preuss PhD2, Kris Young PhD3, Misa Graff PhD3, Hélène Choquet PhD4, David J Couper PhD1, Steve Buyske PhD5, Stephanie A Bien PhD6, Eric Jorgenson PhD4, Charles Kooperberg PhD6, Ruth J. F. Loos PhD2, Alanna C Morrison PhD7, Kari E North PhD3, Bing Yu PhD7, Alexander P Reiner MD8, Yun Li PhD9,1,10 *, Laura M Raffield PhD9 * * Contributed equally to this work 

Joint/multiple tissue TWAS approaches such as UTMOST [ 9 ] and MR-JTI [ 8 ] could be employed in the future to assess the relevance of other tissues at blood-cell related loci.