scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films

24 Oct 1991-Nature (Nature Publishing Group)-Vol. 353, Iss: 6346, pp 737-740
TL;DR: In this article, the authors describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency.
Abstract: THE large-scale use of photovoltaic devices for electricity generation is prohibitively expensive at present: generation from existing commercial devices costs about ten times more than conventional methods1. Here we describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency. The device is based on a 10-µm-thick, optically transparent film of titanium dioxide particles a few nanometres in size, coated with a monolayer of a charge-transfer dye to sensitize the film for light harvesting. Because of the high surface area of the semiconductor film and the ideal spectral characteristics of the dye, the device harvests a high proportion of the incident solar energy flux (46%) and shows exceptionally high efficiencies for the conversion of incident photons to electrical current (more than 80%). The overall light-to-electric energy conversion yield is 7.1-7.9% in simulated solar light and 12% in diffuse daylight. The large current densities (greater than 12 mA cm-2) and exceptional stability (sustaining at least five million turnovers without decomposition), as well as the low cost, make practical applications feasible.
Citations
More filters
Journal ArticleDOI
TL;DR: A molecularly engineered porphyrin dye is reported, coded SM315, which features the prototypical structure of a donor-π-bridge-acceptor and both maximizes electrolyte compatibility and improves light-harvesting properties.
Abstract: A dye that both maximizes electrolyte compatibility and improves light-harvesting properties has been designed for dye-sensitized solar cells. In cells based on the cobalt(II)/(III) redox mediator, use of the dye resulted in a power-conversion efficiency of 13%, revealing the great potential of porphyrin dyes for future solar cell applications.

3,940 citations


Cites background from "A low-cost, high-efficiency solar c..."

  • ...A reduction in VOC can originate from either (1) downward shift of the conduction band or (2) the enhanced recombination of injected charges in the TiO2 film with the dye or electrolyte6,46–48....

    [...]

Journal ArticleDOI
27 Sep 2002-Science
TL;DR: A chemically modified n-type TiO2 is synthesized by controlled combustion of Ti metal in a natural gas flame and performs water splitting with a total conversion efficiency of 11% and a maximum photoconversion efficiency of 8.35% when illuminated at 40 milliwatts per square centimeter.
Abstract: Although n-type titanium dioxide (TiO2) is a promising substrate for photogeneration of hydrogen from water, most attempts at doping this material so that it absorbs light in the visible region of the solar spectrum have met with limited success. We synthesized a chemically modified n-type TiO2 by controlled combustion of Ti metal in a natural gas flame. This material, in which carbon substitutes for some of the lattice oxygen atoms, absorbs light at wavelengths below 535 nanometers and has a lower band-gap energy than rutile (2.32 versus 3.00 electron volts). At an applied potential of 0.3 volt, chemically modified n-type TiO2 performs water splitting with a total conversion efficiency of 11% and a maximum photoconversion efficiency of 8.35% when illuminated at 40 milliwatts per square centimeter. The latter value compares favorably with a maximum photoconversion efficiency of 1% for n-type TiO2 biased at 0.6 volt.

3,911 citations

Journal ArticleDOI
TL;DR: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each that are among the hottest research topics of the last decades.
Abstract: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each. Their size ranges from 2-3 to about 20 nm. What is special about this size regime that placed NCs among the hottest research topics of the last decades? The quantum mechanical coupling * To whom correspondence should be addressed. E-mail: dvtalapin@uchicago.edu. † The University of Chicago. ‡ Argonne National Lab. Chem. Rev. 2010, 110, 389–458 389

3,720 citations

Journal ArticleDOI
TL;DR: In this article, the up-to-date development of the above-mentioned technologies applied to TiO 2 photocatalytic hydrogen production is reviewed, based on the studies reported in the literature, metal ion-implantation and dye sensitization are very effective methods to extend the activating spectrum to the visible range.
Abstract: Nano-sized TiO 2 photocatalytic water-splitting technology has great potential for low-cost, environmentally friendly solar-hydrogen production to support the future hydrogen economy. Presently, the solar-to-hydrogen energy conversion efficiency is too low for the technology to be economically sound. The main barriers are the rapid recombination of photo-generated electron/hole pairs as well as backward reaction and the poor activation of TiO 2 by visible light. In response to these deficiencies, many investigators have been conducting research with an emphasis on effective remediation methods. Some investigators studied the effects of addition of sacrificial reagents and carbonate salts to prohibit rapid recombination of electron/hole pairs and backward reactions. Other research focused on the enhancement of photocatalysis by modification of TiO 2 by means of metal loading, metal ion doping, dye sensitization, composite semiconductor, anion doping and metal ion-implantation. This paper aims to review the up-to-date development of the above-mentioned technologies applied to TiO 2 photocatalytic hydrogen production. Based on the studies reported in the literature, metal ion-implantation and dye sensitization are very effective methods to extend the activating spectrum to the visible range. Therefore, they play an important role in the development of efficient photocatalytic hydrogen production.

3,714 citations


Cites background from "A low-cost, high-efficiency solar c..."

  • ...The excitation, electron injection and dye regeneration can be expressed as follows [110]:...

    [...]

Journal ArticleDOI
29 May 2008-Nature
TL;DR: This work synthesized uniform anatase TiO2 single crystals with a high percentage (47 per cent) of {001} facets using hydrofluoric acid as a morphology controlling agent and demonstrates that for fluorine-terminated surfaces this relative stability is reversed.
Abstract: [Yang, Hua Gui; Sun, Cheng Hua; Qiao, Shi Zhang; Liu, Gang; Smith, Sean Campbell; Lu, Gao Qing] Univ Queensland, ARC Ctr Excellence Funct Nanomat, Sch Engn, Brisbane, Qld 4072, Australia. [Yang, Hua Gui; Sun, Cheng Hua; Qiao, Shi Zhang; Liu, Gang; Smith, Sean Campbell; Lu, Gao Qing] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Ctr Computat Mol Sci, Brisbane, Qld 4072, Australia. [Zou, Jin] Univ Queensland, Ctr Microscopy & Microanal, Brisbane, Qld 4072, Australia. [Zou, Jin] Univ Queensland, Sch Engn, Brisbane, Qld 4072, Australia. [Liu, Gang; Cheng, Hui Ming] Chinese Acad Sci, Met Res Inst, Shenyang Natl Lab Mat sci, Shenyang 110016, Peoples R China.;Lu, GQ (reprint author), Univ Queensland, ARC Ctr Excellence Funct Nanomat, Sch Engn, Brisbane, Qld 4072, Australia;s.qiao@uq.edu.au maxlu@uq.edu.au

3,656 citations

References
More filters
Journal ArticleDOI
07 Jul 1972-Nature
TL;DR: Water photolysis is investigated by exploiting the fact that water is transparent to visible light and cannot be decomposed directly, but only by radiation with wavelengths shorter than 190 nm.
Abstract: ALTHOUGH the possibility of water photolysis has been investigated by many workers, a useful method has only now been developed. Because water is transparent to visible light it cannot be decomposed directly, but only by radiation with wavelengths shorter than 190 nm (ref. 1).

27,819 citations

Journal ArticleDOI
TL;DR: In this article, the dynamics of charge recombination following electron injection from the excited state of RuL{sub 3} into the conduction band of the semiconductor were examined under potentiostatic control of the electric field within the space charge layer of the membrane.
Abstract: Transparent titanium dioxide membranes (thickness 2.7 {mu}m) were prepared by sintering of 8-nm colloidal anatase particles on a conducting glass support. The dynamics of charge recombination following electron injection from the excited state of RuL{sub 3} (L = 2,2{prime}-bipyridine-4,4{prime}-dicarboxylic acid) into the conduction band of the semiconductor were examined under potentiostatic control of the electric field within the space charge layer of the membrane. Biasing the Fermi level of the TiO{sub 2} positive of the flat-band potential sharply reduced the recombination rate, a 1,000-fold decrease being associated with a potential change of only 300 mV. Photoelectrochemical experiments performed with the same RuL{sub 3}-loaded membrane in NaI-containing water show the onset of anodic photocurrent to occur in the same potential domain. Forward biasing of the membrane potential impairs photosensitized charge injection turning on the photoluminescence of the adsorbed sensitizer.

693 citations

Journal ArticleDOI
TL;DR: In this article, it was realized that semiconductor electrodes behave differently in many respects and offer new insights into the role played by the electronic properties of a solid in its electrochemical reactivity.

410 citations

Journal ArticleDOI
TL;DR: In this article, the chemical and photochemical behavior of MoS 2 -van der Waals surfaces in contact with an aqueous electrolyte has been investigated by means of electrochemical techniques.

348 citations