scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Maturity Model for Assessing Industry 4.0 Readiness and Maturity of Manufacturing Enterprises

01 Jan 2016-Procedia CIRP (Elsevier)-Vol. 52, pp 161-166
TL;DR: In this paper, the authors propose an empirically grounded model and its implementation to assess the Industry 4.0 maturity of industrial enterprises in the domain of discrete manufacturing by including organizational aspects.
About: This article is published in Procedia CIRP.The article was published on 2016-01-01 and is currently open access. It has received 966 citations till now. The article focuses on the topics: Service Integration Maturity Model & Capability Maturity Model.
Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive review on Industry 4.0 is conducted and presents an overview of the content, scope, and findings by examining the existing literatures in all of the databases within the Web of Science.

1,906 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied how the adoption of different Industry 4.0 technologies is associated with expected benefits for product, operations and side-effects aspects in the Brazilian industry.

1,024 citations


Cites background from "A Maturity Model for Assessing Indu..."

  • ...0 can be understood as a result of the growing digitization of companies, especially regarding to manufacturing processes (Kagermann, 2015; Schumacher et al., 2016)....

    [...]

  • ..., 2017); and (iii) external environment – adoption of new technologies are dependent of the maturity where they are implemented (Schumacher et al., 2016)....

    [...]

Journal ArticleDOI
TL;DR: This exhaustive literature review provides a concrete definition of Industry 4.0 and defines its six design principles such as interoperability, virtualization, local, real-time talent, service orientation and modularity.
Abstract: Manufacturing industry profoundly impact economic and societal progress. As being a commonly accepted term for research centers and universities, the Industry 4.0 initiative has received a splendid attention of the business and research community. Although the idea is not new and was on the agenda of academic research in many years with different perceptions, the term “Industry 4.0” is just launched and well accepted to some extend not only in academic life but also in the industrial society as well. While academic research focuses on understanding and defining the concept and trying to develop related systems, business models and respective methodologies, industry, on the other hand, focuses its attention on the change of industrial machine suits and intelligent products as well as potential customers on this progress. It is therefore important for the companies to primarily understand the features and content of the Industry 4.0 for potential transformation from machine dominant manufacturing to digital manufacturing. In order to achieve a successful transformation, they should clearly review their positions and respective potentials against basic requirements set forward for Industry 4.0 standard. This will allow them to generate a well-defined road map. There has been several approaches and discussions going on along this line, a several road maps are already proposed. Some of those are reviewed in this paper. However, the literature clearly indicates the lack of respective assessment methodologies. Since the implementation and applications of related theorems and definitions outlined for the 4th industrial revolution is not mature enough for most of the reel life implementations, a systematic approach for making respective assessments and evaluations seems to be urgently required for those who are intending to speed this transformation up. It is now main responsibility of the research community to developed technological infrastructure with physical systems, management models, business models as well as some well-defined Industry 4.0 scenarios in order to make the life for the practitioners easy. It is estimated by the experts that the Industry 4.0 and related progress along this line will have an enormous effect on social life. As outlined in the introduction, some social transformation is also expected. It is assumed that the robots will be more dominant in manufacturing, implanted technologies, cooperating and coordinating machines, self-decision-making systems, autonom problem solvers, learning machines, 3D printing etc. will dominate the production process. Wearable internet, big data analysis, sensor based life, smart city implementations or similar applications will be the main concern of the community. This social transformation will naturally trigger the manufacturing society to improve their manufacturing suits to cope with the customer requirements and sustain competitive advantage. A summary of the potential progress along this line is reviewed in introduction of the paper. It is so obvious that the future manufacturing systems will have a different vision composed of products, intelligence, communications and information network. This will bring about new business models to be dominant in industrial life. Another important issue to take into account is that the time span of this so-called revolution will be so short triggering a continues transformation process to yield some new industrial areas to emerge. This clearly puts a big pressure on manufacturers to learn, understand, design and implement the transformation process. Since the main motivation for finding the best way to follow this transformation, a comprehensive literature review will generate a remarkable support. This paper presents such a review for highlighting the progress and aims to help improve the awareness on the best experiences. It is intended to provide a clear idea for those wishing to generate a road map for digitizing the respective manufacturing suits. By presenting this review it is also intended to provide a hands-on library of Industry 4.0 to both academics as well as industrial practitioners. The top 100 headings, abstracts and key words (i.e. a total of 619 publications of any kind) for each search term were independently analyzed in order to ensure the reliability of the review process. Note that, this exhaustive literature review provides a concrete definition of Industry 4.0 and defines its six design principles such as interoperability, virtualization, local, real-time talent, service orientation and modularity. It seems that these principles have taken the attention of the scientists to carry out more variety of research on the subject and to develop implementable and appropriate scenarios. A comprehensive taxonomy of Industry 4.0 can also be developed through analyzing the results of this review.

1,011 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of Industry 4.0 with its applications and identify the challenges and issues occurring with implementation of Industry4.0 and to study the new trends and streams related to Industry 4,0.

828 citations

Journal ArticleDOI
TL;DR: In this paper, the authors conduct a systematic and content-centric review of literature based on a six-stage approach to identify key design principles and technology trends of Industry 4.0.
Abstract: The purpose of this paper is to conduct a state-of-the-art review of the ongoing research on the Industry 4.0 phenomenon, highlight its key design principles and technology trends, identify its architectural design and offer a strategic roadmap that can serve manufacturers as a simple guide for the process of Industry 4.0 transition.,The study performs a systematic and content-centric review of literature based on a six-stage approach to identify key design principles and technology trends of Industry 4.0. The study further benefits from a comprehensive content analysis of the 178 documents identified, both manually and via IBM Watson’s natural language processing for advanced text analysis.,Industry 4.0 is an integrative system of value creation that is comprised of 12 design principles and 14 technology trends. Industry 4.0 is no longer a hype and manufacturers need to get on board sooner rather than later.,The strategic roadmap presented in this study can serve academicians and practitioners as a stepping stone for development of a detailed strategic roadmap for successful transition from traditional manufacturing into the Industry 4.0. However, there is no one-size-fits-all strategy that suits all businesses or industries, meaning that the Industry 4.0 roadmap for each company is idiosyncratic, and should be devised based on company’s core competencies, motivations, capabilities, intent, goals, priorities and budgets.,The first step for transitioning into the Industry 4.0 is the development of a comprehensive strategic roadmap that carefully identifies and plans every single step a manufacturing company needs to take, as well as the timeline, and the costs and benefits associated with each step. The strategic roadmap presented in this study can offer as a holistic view of common steps that manufacturers need to undertake in their transition toward the Industry 4.0.,The study is among the first to identify, cluster and describe design principles and technology trends that are building blocks of the Industry 4.0. The strategic roadmap for Industry 4.0 transition presented in this study is expected to assist contemporary manufacturers to understand what implementing the Industry 4.0 really requires of them and what challenges they might face during the transition process.

773 citations

References
More filters
Journal ArticleDOI
TL;DR: The objective is to describe the performance of design-science research in Information Systems via a concise conceptual framework and clear guidelines for understanding, executing, and evaluating the research.
Abstract: Two paradigms characterize much of the research in the Information Systems discipline: behavioral science and design science The behavioral-science paradigm seeks to develop and verify theories that explain or predict human or organizational behavior The design-science paradigm seeks to extend the boundaries of human and organizational capabilities by creating new and innovative artifacts Both paradigms are foundational to the IS discipline, positioned as it is at the confluence of people, organizations, and technology Our objective is to describe the performance of design-science research in Information Systems via a concise conceptual framework and clear guidelines for understanding, executing, and evaluating the research In the design-science paradigm, knowledge and understanding of a problem domain and its solution are achieved in the building and application of the designed artifact Three recent exemplars in the research literature are used to demonstrate the application of these guidelines We conclude with an analysis of the challenges of performing high-quality design-science research in the context of the broader IS community

10,264 citations

Journal ArticleDOI

3,741 citations


"A Maturity Model for Assessing Indu..." refers methods in this paper

  • ...The framework methodology we have used to develop our model is based on Becker’s step-by-step process for the development of maturity models [21] which has a strong theoretical foundation in Hevner’s design science approach [22] and offers a rigorous methodology....

    [...]

Journal Article

1,018 citations

Journal ArticleDOI
TL;DR: There are significant roots generally and particularly in the CIRP community -which point towards CPPSs, and Expectations and the related new R&D challenges will be outlined.

971 citations


"A Maturity Model for Assessing Indu..." refers background in this paper

  • ...to act in an intelligent and partly autonomous way that requires minimal manual interventions [6]....

    [...]

Journal ArticleDOI
21 May 2009
TL;DR: A generic and consolidated procedure model for the design of maturity models is proposed, which provides a manual for the theoretically founded development and evaluation of maturity model development.
Abstract: Maturity models are valuable instruments for IT managers because they allow the assessment of the current situation of a company as well as the identification of reasonable improvement measures. Over the last few years, more than a hundred maturity models have been developed to support IT management. They address a broad range of different application areas, comprising holistic assessments of IT management as well as appraisals of specific subareas (e. g. Business Process Management, Business Intelligence).

789 citations


"A Maturity Model for Assessing Indu..." refers methods in this paper

  • ...The framework methodology we have used to develop our model is based on Becker’s step-by-step process for the development of maturity models [21] which has a strong theoretical foundation in Hevner’s design science approach [22] and offers a rigorous methodology....

    [...]