scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations

01 Dec 1952-Annals of Mathematical Statistics (Institute of Mathematical Statistics)-Vol. 23, Iss: 4, pp 493-507
TL;DR: In this paper, it was shown that the likelihood ratio test for fixed sample size can be reduced to this form, and that for large samples, a sample of size $n$ with the first test will give about the same probabilities of error as a sample with the second test.
Abstract: In many cases an optimum or computationally convenient test of a simple hypothesis $H_0$ against a simple alternative $H_1$ may be given in the following form. Reject $H_0$ if $S_n = \sum^n_{j=1} X_j \leqq k,$ where $X_1, X_2, \cdots, X_n$ are $n$ independent observations of a chance variable $X$ whose distribution depends on the true hypothesis and where $k$ is some appropriate number. In particular the likelihood ratio test for fixed sample size can be reduced to this form. It is shown that with each test of the above form there is associated an index $\rho$. If $\rho_1$ and $\rho_2$ are the indices corresponding to two alternative tests $e = \log \rho_1/\log \rho_2$ measures the relative efficiency of these tests in the following sense. For large samples, a sample of size $n$ with the first test will give about the same probabilities of error as a sample of size $en$ with the second test. To obtain the above result, use is made of the fact that $P(S_n \leqq na)$ behaves roughly like $m^n$ where $m$ is the minimum value assumed by the moment generating function of $X - a$. It is shown that if $H_0$ and $H_1$ specify probability distributions of $X$ which are very close to each other, one may approximate $\rho$ by assuming that $X$ is normally distributed.
Citations
More filters
Journal ArticleDOI
TL;DR: The new experts method represents a shift from the paradigms of regret minimization and myopic optimization to consideration of the long-term effect of a player's actions on the environment, and is capable of inducing cooperation in the repeated Prisoner's Dilemma game.
Abstract: “Experts algorithms” constitute a methodology for choosing actions repeatedly, when the rewards depend both on the choice of action and on the unknown current state of the environment. An experts algorithm has access to a set of strategies (“experts”), each of which may recommend which action to choose. The algorithm learns how to combine the recommendations of individual experts so that, in the long run, for any fixed sequence of states of the environment, it does as well as the best expert would have done relative to the same sequence. This methodology may not be suitable for situations where the evolution of states of the environment depends on past chosen actions, as is usually the case, for example, in a repeated non-zero-sum game.A general exploration-exploitation experts method is presented along with a proper definition of value. The definition is shown to be adequate in that it both captures the impact of an expert's actions on the environment and is learnable. The new experts method is quite different from previously proposed experts algorithms. It represents a shift from the paradigms of regret minimization and myopic optimization to consideration of the long-term effect of a player's actions on the environment. The importance of this shift is demonstrated by the fact that this algorithm is capable of inducing cooperation in the repeated Prisoner's Dilemma game, whereas previous experts algorithms converge to the suboptimal non-cooperative play. The method is shown to asymptotically perform as well as the best available expert. Several variants are analyzed from the viewpoint of the exploration-exploitation tradeoff, including explore-then-exploit, polynomially vanishing exploration, constant-frequency exploration, and constant-size exploration phases. Complexity and performance bounds are proven.

49 citations

Proceedings ArticleDOI
01 Jan 1998
TL;DR: This paper examines noisy radio (broadcast) networks in which every bit transmitted has a certain probability of being flipped and shows a protocol to compute any threshold function using only a linear number of transmissions.
Abstract: In this paper, we examine noisy radio (broadcast) networks in which every bit transmitted has a certain probability of being flipped. Each processor has some initial input bit, and the goal is to compute a function of these input bits. In this model, we show a protocol to compute any threshold function using only a linear number of transmissions.

49 citations

Posted Content
TL;DR: In this article, the authors studied the regret of the Thompson sampling (TS) algorithm for the stochastic combinatorial multi-armed bandit (CMAB) problem.
Abstract: We study the application of the Thompson sampling (TS) methodology to the stochastic combinatorial multi-armed bandit (CMAB) framework. We analyze the standard TS algorithm for the general CMAB, and obtain the first distribution-dependent regret bound of $O(mK_{\max}\log T / \Delta_{\min})$, where $m$ is the number of arms, $K_{\max}$ is the size of the largest super arm, $T$ is the time horizon, and $\Delta_{\min}$ is the minimum gap between the expected reward of the optimal solution and any non-optimal solution. We also show that one cannot directly replace the exact offline oracle with an approximation oracle in TS algorithm for even the classical MAB problem. Then we expand the analysis to two special cases: the linear reward case and the matroid bandit case. When the reward function is linear, the regret of the TS algorithm achieves a better bound $O(m\log K_{\max}\log T / \Delta_{\min})$. For matroid bandit, we could remove the independence assumption across arms and achieve a regret upper bound that matches the lower bound for the matroid case. Finally, we use some experiments to show the comparison between regrets of TS and other existing algorithms like CUCB and ESCB.

49 citations

Journal ArticleDOI
TL;DR: It is proved that, if T n denotes the random tournament on n vertices, then, P (h(T n ) ≤ 1 2 ( 2 n ) + 1.73n 3 2 ) → 1 as n → ∞.

49 citations


Cites background from "A Measure of Asymptotic Efficiency ..."

  • ...(1) k>(n/2)(1+1) This inequality is easily deduced from the well-known inequality of Chernoff 111, m--1 < exp[(m - k) log(mq/(m - k)) + k log(mp/k)],...

    [...]

Posted Content
TL;DR: A marginalized importance sampling (MIS) estimator that recursively estimates the state marginal distribution for the target policy at every step and is believed to be the first OPE estimation error bound with a polynomial dependence on the RL horizon $H.
Abstract: Motivated by the many real-world applications of reinforcement learning (RL) that require safe-policy iterations, we consider the problem of off-policy evaluation (OPE) -- the problem of evaluating a new policy using the historical data obtained by different behavior policies -- under the model of nonstationary episodic Markov Decision Processes (MDP) with a long horizon and a large action space. Existing importance sampling (IS) methods often suffer from large variance that depends exponentially on the RL horizon $H$. To solve this problem, we consider a marginalized importance sampling (MIS) estimator that recursively estimates the state marginal distribution for the target policy at every step. MIS achieves a mean-squared error of $$ \frac{1}{n} \sum olimits_{t=1}^H\mathbb{E}_{\mu}\left[\frac{d_t^\pi(s_t)^2}{d_t^\mu(s_t)^2} \mathrm{Var}_{\mu}\left[\frac{\pi_t(a_t|s_t)}{\mu_t(a_t|s_t)}\big( V_{t+1}^\pi(s_{t+1}) + r_t\big) \middle| s_t\right]\right] + \tilde{O}(n^{-1.5}) $$ where $\mu$ and $\pi$ are the logging and target policies, $d_t^{\mu}(s_t)$ and $d_t^{\pi}(s_t)$ are the marginal distribution of the state at $t$th step, $H$ is the horizon, $n$ is the sample size and $V_{t+1}^\pi$ is the value function of the MDP under $\pi$. The result matches the Cramer-Rao lower bound in \citet{jiang2016doubly} up to a multiplicative factor of $H$. To the best of our knowledge, this is the first OPE estimation error bound with a polynomial dependence on $H$. Besides theory, we show empirical superiority of our method in time-varying, partially observable, and long-horizon RL environments.

49 citations


Cites background from "A Measure of Asymptotic Efficiency ..."

  • ...Chernoff, H. et al. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations....

    [...]

References
More filters