scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Medicinal Chemist’s Guide to Molecular Interactions

26 Mar 2010-Journal of Medicinal Chemistry (American Chemical Society)-Vol. 53, Iss: 14, pp 5061-5084
TL;DR: This article compile and review the literature on molecular interactions as it pertains to medicinal chemistry through a combination of careful statistical analysis of the large body of publicly available X-ray structure data and experimental and theoretical studies of specific model systems.
Abstract: Molecular recognition in biological systems relies on the existence of specific attractive interactions between two partner molecules. Structure-based drug design seeks to identify and optimize such interactions between ligands and their host molecules, typically proteins, given their three-dimensional structures. This optimization process requires knowledge about interaction geometries and approximate affinity contributions of attractive interactions that can be gleaned from crystal structure and associated affinity data. Here we compile and review the literature on molecular interactions as it pertains to medicinal chemistry through a combination of careful statistical analysis of the large body of publicly available X-ray structure data and experimental and theoretical studies of specific model systems. We attempt to extract key messages of practical value and complement references with our own searches of the CSDa,(1) and PDB databases.(2) The focus is on direct contacts between ligand and protein functional groups, and we restrict ourselves to those interactions that are most frequent in medicinal chemistry applications. Examples from supramolecular chemistry and quantum mechanical or molecular mechanics calculations are cited where they illustrate a specific point. The application of automated design processes is not covered nor is design of physicochemical properties of molecules such as permeability or solubility. Throughout this article, we wish to raise the readers’ awareness that formulating rules for molecular interactions is only possible within certain boundaries. The combination of 3D structure analysis with binding free energies does not yield a complete understanding of the energetic contributions of individual interactions. The reasons for this are widely known but not always fully appreciated. While it would be desirable to associate observed interactions with energy terms, we have to accept that molecular interactions behave in a highly nonadditive fashion.3,4 The same interaction may be worth different amounts of free energy in different contexts, and it is very hard to find an objective frame of reference for an interaction, since any change of a molecular structure will have multiple effects. One can easily fall victim to confirmation bias, focusing on what one has observed before and building causal relationships on too few observations. In reality, the multiplicity of interactions present in a single protein−ligand complex is a compromise of attractive and repulsive interactions that is almost impossible to deconvolute. By focusing on observed interactions, one neglects a large part of the thermodynamic cycle represented by a binding free energy: solvation processes, long-range interactions, conformational changes. Also, crystal structure coordinates give misleadingly static views of interactions. In reality a macromolecular complex is not characterized by a single structure but by an ensemble of structures. Changes in the degrees of freedom of both partners during the binding event have a large impact on binding free energy. The text is organized in the following way. The first section treats general aspects of molecular design: enthalpic and entropic components of binding free energy, flexibility, solvation, and the treatment of individual water molecules, as well as repulsive interactions. The second half of the article is devoted to specific types of interactions, beginning with hydrogen bonds, moving on to weaker polar interactions, and ending with lipophilic interactions between aliphatic and aromatic systems. We show many examples of structure−activity relationships; these are meant as helpful illustrations but individually can never confirm a rule.
Citations
More filters
Journal ArticleDOI
TL;DR: The reaction types used in the pursuit of novel drug candidates are analyzed to evaluate their frequency of occurrence, alongside other factors such as drug likeness, chirality, and the number of steps to each derivative.
Abstract: The Medicinal Chemist’s Toolbox: An Analysis of Reactions Used in the Pursuit of Drug Candidates

1,712 citations

Journal ArticleDOI
TL;DR: This review describes a multidimensional treatment of molecular recognition phenomena involving aromatic rings in chemical and biological systems that facilitates the development of new advanced materials and supramolecular systems, and should inspire further utilization of interactions with aromatic rings to control the stereochemical outcome of synthetic transformations.
Abstract: This review describes a multidimensional treatment of molecular recognition phenomena involving aromatic rings in chemical and biological systems. It summarizes new results reported since the appearance of an earlier review in 2003 in host-guest chemistry, biological affinity assays and biostructural analysis, data base mining in the Cambridge Structural Database (CSD) and the Protein Data Bank (PDB), and advanced computational studies. Topics addressed are arene-arene, perfluoroarene-arene, S⋅⋅⋅aromatic, cation-π, and anion-π interactions, as well as hydrogen bonding to π systems. The generated knowledge benefits, in particular, structure-based hit-to-lead development and lead optimization both in the pharmaceutical and in the crop protection industry. It equally facilitates the development of new advanced materials and supramolecular systems, and should inspire further utilization of interactions with aromatic rings to control the stereochemical outcome of synthetic transformations.

1,221 citations

Journal ArticleDOI
TL;DR: The purpose of this review is to examine current molecular docking strategies used in drug discovery and medicinal chemistry, exploring the advances in the field and the role played by the integration of structure- and ligand-based methods.
Abstract: Pharmaceutical research has successfully incorporated a wealth of molecular modeling methods, within a variety of drug discovery programs, to study complex biological and chemical systems. The integration of computational and experimental strategies has been of great value in the identification and development of novel promising compounds. Broadly used in modern drug design, molecular docking methods explore the ligand conformations adopted within the binding sites of macromolecular targets. This approach also estimates the ligand-receptor binding free energy by evaluating critical phenomena involved in the intermolecular recognition process. Today, as a variety of docking algorithms are available, an understanding of the advantages and limitations of each method is of fundamental importance in the development of effective strategies and the generation of relevant results. The purpose of this review is to examine current molecular docking strategies used in drug discovery and medicinal chemistry, exploring the advances in the field and the role played by the integration of structure- and ligand-based methods.

1,120 citations


Cites background or methods from "A Medicinal Chemist’s Guide to Mole..."

  • ...Alongside the use of such algorithms, a comparison between structural water in multiple crystal structures should be carried out to minimize the risk of mistakenly discarding or keeping a specific water molecule [109] (strongly bound water is often conserved across multiple...

    [...]

  • ...Usually, structural water is located in deep pockets of the receptor structure and mediates multiple hydrogen bonds between the ligand and the protein binding site [109]....

    [...]

  • ...The release of a crystallographic water molecule from its binding site is entropically favorable; however the process causes a simultaneous loss in enthalpy [109]....

    [...]

Journal ArticleDOI
TL;DR: The origins of the CCDC are traced, the growth of the CSD and its extensive associated software system are described, and its impact and value are summarized as a basis for research in structural chemistry, materials science and the life sciences, including drug discovery and drug development.
Abstract: The Cambridge Crystallographic Data Centre (CCDC) was established in 1965 to record numerical, chemical and bibliographic data relating to published organic and metal–organic crystal structures. The Cambridge Structural Database (CSD) now stores data for nearly 700 000 structures and is a comprehensive and fully retrospective historical archive of small-molecule crystallography. Nearly 40 000 new structures are added each year. As X-ray crystallography celebrates its centenary as a subject, and the CCDC approaches its own 50th year, this article traces the origins of the CCDC as a publicly funded organization and its onward development into a self-financing charitable institution. Principally, however, we describe the growth of the CSD and its extensive associated software system, and summarize its impact and value as a basis for research in structural chemistry, materials science and the life sciences, including drug discovery and drug development. Finally, the article considers the CCDC’s funding model in relation to open access and open data paradigms.

974 citations

Journal ArticleDOI
TL;DR: The theoretical background defining its strength and directionality, a systematic analysis of its occurrence and interaction geometries in protein-ligand complexes, and recent examples where halogen bonding has been successfully harnessed for lead identification and optimization are provided.
Abstract: Halogen bonding has been known in material science for decades, but until recently, halogen bonds in protein–ligand interactions were largely the result of serendipitous discovery rather than rational design. In this Perspective, we provide insights into the phenomenon of halogen bonding, with special focus on its role in drug discovery. We summarize the theoretical background defining its strength and directionality, provide a systematic analysis of its occurrence and interaction geometries in protein–ligand complexes, and give recent examples where halogen bonding has been successfully harnessed for lead identification and optimization. In light of these data, we discuss the potential and limitations of exploiting halogen bonds for molecular recognition and rational drug design.

934 citations

References
More filters
Journal ArticleDOI
TL;DR: The Cambridge Structural Database now contains data for more than a quarter of a million small-molecule crystal structures, and projections concerning future accession rates indicate that the CSD will contain at least 500,000 crystal structures by the year 2010.
Abstract: The Cambridge Structural Database (CSD) now contains data for more than a quarter of a million small-molecule crystal structures. The information content of the CSD, together with methods for data acquisition, processing and validation, are summarized, with particular emphasis on the chemical information added by CSD editors. Nearly 80% of new structural data arrives electronically, mostly in CIF format, and the CCDC acts as the official crystal structure data depository for 51 major journals. The CCDC now maintains both a CIF archive (more than 73000 CIFs dating from 1996), as well as the distributed binary CSD archive; the availability of data in both archives is discussed. A statistical survey of the CSD is also presented and projections concerning future accession rates indicate that the CSD will contain at least 500000 crystal structures by the year 2010.

9,865 citations

Journal ArticleDOI
TL;DR: The Protein Data Bank is a computer-based archival file for macromolecular structures that stores in a uniform format atomic co-ordinates and partial bond connectivities, as derived from crystallographic studies.

7,983 citations

Journal ArticleDOI
TL;DR: Mercury as discussed by the authors is a crystal structure visualization tool that allows highly customizable searching of structural databases for intermolecular interaction motifs and packing patterns, as well as the ability to perform packing similarity calculations between structures containing the same compound.
Abstract: The program Mercury, developed by the Cambridge Crystallographic Data Centre, is designed primarily as a crystal structure visualization tool. A new module of functionality has been produced, called the Materials Module, which allows highly customizable searching of structural databases for intermolecular interaction motifs and packing patterns. This new module also includes the ability to perform packing similarity calculations between structures containing the same compound. In addition to the Materials Module, a range of further enhancements to Mercury has been added in this latest release, including void visualization and links to ConQuest, Mogul and IsoStar.

7,879 citations

Journal ArticleDOI
28 Sep 2007-Science
TL;DR: Experimental progress in exploration of the specific influence of carbon-fluorine single bonds on docking interactions is reviewed and complementary analysis based on comprehensive searches in the Cambridge Structural Database and the Protein Data Bank is added.
Abstract: Fluorine substituents have become a widespread and important drug component, their introduction facilitated by the development of safe and selective fluorinating agents. Organofluorine affects nearly all physical and adsorption, distribution, metabolism, and excretion properties of a lead compound. Its inductive effects are relatively well understood, enhancing bioavailability, for example, by reducing the basicity of neighboring amines. In contrast, exploration of the specific influence of carbon-fluorine single bonds on docking interactions, whether through direct contact with the protein or through stereoelectronic effects on molecular conformation of the drug, has only recently begun. Here, we review experimental progress in this vein and add complementary analysis based on comprehensive searches in the Cambridge Structural Database and the Protein Data Bank.

4,906 citations