scispace - formally typeset
Open AccessJournal ArticleDOI

A Membrane-Bound Cytochrome Enables Methanosarcina acetivorans To Conserve Energy from Extracellular Electron Transfer.

Reads0
Chats0
TLDR
These studies with Methanosarcina acetivorans provide the first genetic evidence for cytochrome-based extracellular electron transfer in Archaea, and suggest parallels with Gram-negative bacteria, such as Shewanella and Geobacter species, in which multiheme outer-surface c-type cytochromes are an essential component for electrical communication with the ext racellular environment.
Abstract
Extracellular electron exchange in Methanosarcina species and closely related Archaea plays an important role in the global carbon cycle and enhances the speed and stability of anaerobic digestion by facilitating efficient syntrophic interactions. Here, we grew Methanosarcina acetivorans with methanol provided as the electron donor and the humic analogue, anthraquione-2,6-disulfonate (AQDS), provided as the electron acceptor when methane production was inhibited with bromoethanesulfonate. AQDS was reduced with simultaneous methane production in the absence of bromoethanesulfonate. Transcriptomics revealed that expression of the gene for the transmembrane, multiheme, c-type cytochrome MmcA was higher in AQDS-respiring cells than in cells performing methylotrophic methanogenesis. A strain in which the gene for MmcA was deleted failed to grow via AQDS reduction but grew with the conversion of methanol or acetate to methane, suggesting that MmcA has a specialized role as a conduit for extracellular electron transfer. Enhanced expression of genes for methanol conversion to methyl-coenzyme M and the Rnf complex suggested that methanol is oxidized to carbon dioxide in AQDS-respiring cells through a pathway that is similar to methyl-coenzyme M oxidation in methanogenic cells. However, during AQDS respiration the Rnf complex and reduced methanophenazine probably transfer electrons to MmcA, which functions as the terminal reductase for AQDS reduction. Extracellular electron transfer may enable the survival of methanogens in dynamic environments in which oxidized humic substances and Fe(III) oxides are intermittently available. The availability of tools for genetic manipulation of M. acetivorans makes it an excellent model microbe for evaluating c-type cytochrome-dependent extracellular electron transfer in Archaea. IMPORTANCE The discovery of a methanogen that can conserve energy to support growth solely from the oxidation of organic carbon coupled to the reduction of an extracellular electron acceptor expands the possible environments in which methanogens might thrive. The potential importance of c-type cytochromes for extracellular electron transfer to syntrophic bacterial partners and/or Fe(III) minerals in some Archaea was previously proposed, but these studies with Methanosarcina acetivorans provide the first genetic evidence for cytochrome-based extracellular electron transfer in Archaea. The results suggest parallels with Gram-negative bacteria, such as Shewanella and Geobacter species, in which multiheme outer-surface c-type cytochromes are an essential component for electrical communication with the extracellular environment. M. acetivorans offers an unprecedented opportunity to study mechanisms for energy conservation from the anaerobic oxidation of one-carbon organic compounds coupled to extracellular electron transfer in Archaea with implications not only for methanogens but possibly also for Archaea that anaerobically oxidize methane.

read more

Citations
More filters
Journal ArticleDOI

Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms

TL;DR: A growing body of research emphasizes their broad phylogenetic diversity and shows that these microorganisms have key roles in multiple biogeochemical cycles, as well as the microbiome of the gut, anaerobic waste digesters and metal corrosion as mentioned in this paper.
Journal ArticleDOI

Extracellular electron uptake in Methanosarcinales is independent of multiheme c-type cytochromes.

TL;DR: Eleven new co-culture combinations between methanogens and electrogens are tested, and it is shown that five additional Methanosarcinales paired with G. metallireducens, while a strict hydrogenotroph could not, suggesting an MHC-independent strategy for extracellular electron uptake.
Journal ArticleDOI

Effect of ammonia on anaerobic digestion of municipal solid waste: Inhibitory performance, bioaugmentation and microbiome functional reconstruction

TL;DR: This research offers the first insight that the key organisms form a syntrophy-supported food web in response to the bioaugmentation with ammonia tolerant methanogens performed in an AD system subjected to severe ammonia inhibition.
References
More filters
Journal ArticleDOI

Trimmomatic: a flexible trimmer for Illumina sequence data

TL;DR: Timmomatic is developed as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data and is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested.
Journal ArticleDOI

edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.

TL;DR: EdgeR as mentioned in this paper is a Bioconductor software package for examining differential expression of replicated count data, which uses an overdispersed Poisson model to account for both biological and technical variability and empirical Bayes methods are used to moderate the degree of overdispersion across transcripts, improving the reliability of inference.
Journal ArticleDOI

Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes

TL;DR: A new membrane protein topology prediction method, TMHMM, based on a hidden Markov model is described and validated, and it is discovered that proteins with N(in)-C(in) topologies are strongly preferred in all examined organisms, except Caenorhabditis elegans, where the large number of 7TM receptors increases the counts for N(out)-C-in topologies.
Journal ArticleDOI

FLASH: Fast Length Adjustment of Short Reads to Improve Genome Assemblies

TL;DR: FLASH is a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short and when FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds.
Journal ArticleDOI

SignalP 4.0: discriminating signal peptides from transmembrane regions

TL;DR: SignalP 4.0 was the best signal-peptide predictor for all three organism types but was not in all cases as good as SignalP 3.0 according to cleavage-site sensitivity or signal- peptide correlation when there are no transmembrane proteins present.
Related Papers (5)